
ICE ClusterWare Documentation
Release 12.4.0

Penguin Computing

Feb 07, 2025

CONTENTS

1 ICE ClusterWare Overview 12
1.1 Cluster Architecture Overview . 12
1.2 The ClusterWare Database . 16
1.3 Provisioning Compute Nodes . 17

2 Quickstart 18
2.1 Prerequisites . 18
2.2 Create Administrator . 18
2.3 Install ClusterWare . 19
2.4 Configure Boot Image and Job Scheduler . 20

3 Install 22
3.1 Supported Distributions and Features . 22
3.2 Required and Recommended Components . 24
3.3 Install ICE ClusterWare . 25

3.3.1 Download the ICE ClusterWare Install Script and Related Files 26
3.3.2 Execute the ICE ClusterWare Install Script . 27

3.4 scyld-install . 31
3.5 scyld-tool-config . 32
3.6 scyld-cluster-conf . 33
3.7 Securing the Cluster . 35

3.7.1 Authentication . 35
3.7.1.1 Assign Temporary Permissions . 36

3.7.2 Role-Based Access Controls . 36
3.7.3 Changing the Database Password . 38

3.7.3.1 Changing the etcd Password . 38
3.7.4 Compute Node Remote Access . 39
3.7.5 Compute Node Host Keys . 39
3.7.6 Encrypting Communications . 39

3.7.6.1 Configure Encrypted Communication between Head and PXE Compute Nodes . . . 40
3.7.6.2 Configure Encrypted Communication between Head and Diskful Compute Nodes . 41
3.7.6.3 Configure Client Authentication between Head and Compute Nodes 41

3.7.7 Security-Enhanced Linux (SELinux) . 41
3.7.7.1 SELinux On Compute Nodes . 41
3.7.7.2 SELinux On Head Nodes . 42
3.7.7.3 MLS Policy On Head Nodes . 42

3.7.8 Security Technical Implementation Guides (STIG) . 42
3.8 Services, Ports, Protocols . 43

3.8.1 Apache . 43

2

3.8.2 Chrony . 43
3.8.3 DHCP . 43
3.8.4 DNS . 43
3.8.5 etcd . 44
3.8.6 iSCSI . 44
3.8.7 OpenSSH . 44
3.8.8 Telegraf / Telegraf-Relay / InfluxDB . 44
3.8.9 TFTP . 44

3.9 Common Additional Configuration . 44
3.9.1 Configure Hostname . 44
3.9.2 Managing Databases . 44
3.9.3 Configure Administrator Authentication . 45
3.9.4 Disable/Enable Chain Booting . 46
3.9.5 scyld-nss Name Service Switch (NSS) Tool . 46
3.9.6 Firewall Configuration . 46
3.9.7 Configure IP Forwarding . 47
3.9.8 Status and Health Monitoring . 47
3.9.9 Install Name Service Cache Daemon (nscd) . 47
3.9.10 Install jq Tool . 47

3.10 Additional Software . 49
3.10.1 Adding 3rd-party Software . 49
3.10.2 Job Schedulers . 50

3.10.2.1 Slurm . 51
3.10.2.2 OpenPBS . 53
3.10.2.3 PBS TORQUE . 55

3.10.3 Kubernetes . 56
3.10.3.1 Bootstrap Kubernetes Control Plane . 57
3.10.3.2 Checking Deployment Status . 58
3.10.3.3 Additional Configuration . 58
3.10.3.4 Adding Workers . 59

3.10.4 OpenMPI, MPICH, and/or MVAPICH . 62

4 Administration 64
4.1 Introduction . 64
4.2 ICE ClusterWare Graphical User Interface . 64
4.3 ICE ClusterWare Command Line Tools . 66

4.3.1 --all and --ids . 66
4.3.2 --config . 66
4.3.3 --base-url and --user . 67
4.3.4 --show-uids, --human, --json, --pretty/--no-pretty 67
4.3.5 --csv, --table, --fields . 67

4.4 Common Subcommand Actions . 68
4.4.1 list (ls) . 68
4.4.2 create (mk) . 68
4.4.3 clone (cp) . 68
4.4.4 update (up) . 68
4.4.5 replace (re) . 68
4.4.6 delete (rm) . 68

4.5 Files in database objects . 68
4.6 The then argument . 69
4.7 The --content argument . 69
4.8 Variable Substitution . 71

4.8.1 Node Attributes, Hardware, and Status . 71
4.8.2 Head Node Substitutions . 71

3

4.8.3 Kickstarting From A Repo . 72
4.9 Manage Cluster . 72

4.9.1 Cluster Overview Page . 72
4.9.2 scyld-clusterctl . 73
4.9.3 scyld-nssctl . 78
4.9.4 IP Forwarding Issues . 79
4.9.5 managedb . 79
4.9.6 ICE ClusterWare Log Files . 81
4.9.7 Creating Diagnostic Test Images . 81
4.9.8 scyld-sysinfo . 82

4.10 Create Login Nodes . 84
4.11 Update and Upgrade . 86

4.11.1 Updating ICE ClusterWare Software . 86
4.11.1.1 Updating head nodes . 86
4.11.1.2 Updating compute nodes . 88
4.11.1.3 Updating ClusterWare 11 to ClusterWare 12 . 88

4.11.2 Updating Firmware . 88
4.11.3 Updating Base Distribution Software . 88

4.12 Backup and Restore . 89
4.12.1 Backup and Restore of ICE ClusterWare Software . 89
4.12.2 Backup and Restore of the Database . 89

4.12.2.1 take-snapshot . 90
4.13 Interacting with Compute Nodes . 91

4.13.1 scyld-nodectl . 91
4.14 Nodes Page . 97

4.14.1 Node Filtering . 98
4.14.2 Node Grid Display . 99
4.14.3 Node List Display . 100

4.15 Executing Commands . 101
4.16 Create Nodes . 103

4.16.1 Node Creation with Known MAC address(es) . 103
4.16.2 Node Creation with Unknown MAC address(es) . 103
4.16.3 Support for Diskful Nodes . 104

4.16.3.1 Pre-Installer Script . 104
4.16.3.2 Installer Scripts . 105
4.16.3.3 Installation Logs . 105
4.16.3.4 Head Node Preparation . 105
4.16.3.5 RPM and DEB Installations . 106
4.16.3.6 TAR Installations . 106

4.16.4 Compute Node Fields . 106
4.16.5 Compute Nodes IPMI Access . 107

4.17 Boot Nodes . 108
4.17.1 Compute Node Initialization Scripts . 108
4.17.2 Booting From Local Storage Cache . 108

4.17.2.1 Failing To Boot From Local Storage . 109
4.17.3 Booting Diskful Compute Nodes . 110

4.17.3.1 Installing the clusterware-node Package . 110
4.17.3.2 Additional Support for Diskful Nodes . 111

4.17.4 scyld-reports . 111
4.18 Manage Nodes . 113

4.18.1 Changing IP Addresses . 113
4.18.2 Node Name Resolution . 113
4.18.3 Command-Line Monitoring of Nodes . 114
4.18.4 Managing Node Failures . 115

4

4.18.4.1 Replacing Failed Nodes . 115
4.18.5 Soft Power Control Failures . 115
4.18.6 Managing Large Clusters . 116

4.18.6.1 Improve Scaling of Node Booting . 116
4.18.7 Hostnames Page . 116

4.18.7.1 Create a Hostname . 116
4.18.7.2 Edit Hostname . 117
4.18.7.3 Delete Hostname . 117
4.18.7.4 Related Links . 117

4.18.8 Manage Non-ICE ClusterWare Entities . 117
4.19 Attribute Groups . 118

4.19.1 Database Objects Fields and Attributes . 118
4.19.2 Attribute Groups Page . 118

4.19.2.1 Create Attribute Group . 119
4.19.2.2 Edit Attribute Group . 119
4.19.2.3 Delete Attribute Group . 119
4.19.2.4 Change Default Attribute Group . 119
4.19.2.5 Related Links . 120

4.19.3 Node Attributes . 120
4.19.4 Dynamic Groups Page . 121

4.19.4.1 Create Dynamic Group . 122
4.19.4.2 Update Dynamic Group . 122
4.19.4.3 Filter Nodes by Dynamic Group . 122
4.19.4.4 Delete Dynamic Group . 122
4.19.4.5 Related Links . 123

4.19.5 Attribute Groups and Dynamic Groups . 123
4.19.6 scyld-attribctl . 125
4.19.7 Reserved Attributes . 127

4.19.7.1 _aim_status . 127
4.19.7.2 _altmacs . 127
4.19.7.3 _ansible_pull . 127
4.19.7.4 _ansible_pull_args . 127
4.19.7.5 _ansible_pull_now . 128
4.19.7.6 _bmc_pass . 128
4.19.7.7 _bootloader . 128
4.19.7.8 _bootnet . 128
4.19.7.9 _busy . 128
4.19.7.10 _boot_config . 129
4.19.7.11 _boot_rw_layer . 129
4.19.7.12 _boot_style . 129
4.19.7.13 _boot_tmpfs_size . 130
4.19.7.14 _coreos_ignition_url . 130
4.19.7.15 _coreos_install_dev . 130
4.19.7.16 _disk_cache . 130
4.19.7.17 _disk_root . 131
4.19.7.18 _disk_wipe . 132
4.19.7.19 _domain . 132
4.19.7.20 _gateways . 132
4.19.7.21 _hardware_plugins . 132
4.19.7.22 _hardware_secs . 133
4.19.7.23 _health . 133
4.19.7.24 _health_check . 133
4.19.7.25 _health_plugins . 134
4.19.7.26 _health_secs . 134

5

4.19.7.27 _health_check_secs . 134
4.19.7.28 _hostname . 134
4.19.7.29 _hosts . 135
4.19.7.30 _ignition . 135
4.19.7.31 _ips . 135
4.19.7.32 _ipxe_sanboot . 135
4.19.7.33 _macs . 136
4.19.7.34 _no_boot . 136
4.19.7.35 _preferred_head . 136
4.19.7.36 _remote_pass . 137
4.19.7.37 _remote_user . 137
4.19.7.38 _sched_extra . 137
4.19.7.39 _sched_full . 137
4.19.7.40 _sched_state . 138
4.19.7.41 _status_cpuset . 138
4.19.7.42 _status_hardware_secs . 138
4.19.7.43 _status_packages_secs . 138
4.19.7.44 _status_plugins . 139
4.19.7.45 _status_secs . 139
4.19.7.46 _telegraf_omit_pattern . 139
4.19.7.47 _telegraf_plugins . 139
4.19.7.48 _tpm_owner_pass . 139

4.20 Naming Pools Page . 140
4.20.1 Create a Naming Pool . 140
4.20.2 Edit Naming Pool . 140
4.20.3 Delete Naming Pool . 141
4.20.4 Change Default Naming Pattern . 141
4.20.5 Related Links . 141

4.21 Node Names and Pools . 141
4.21.1 Node Indexing and Grouping in Naming Pools . 141
4.21.2 Secondary Naming Pools . 143

4.21.2.1 Configuration File . 143
4.21.2.2 Command Line Tools . 143

4.22 Boot Configurations Page . 144
4.22.1 Create Boot Configuration . 144
4.22.2 Edit Boot Configuration . 145
4.22.3 Delete Boot Configuration . 145
4.22.4 Related Links . 145

4.23 scyld-add-boot-config . 145
4.24 scyld-* Wrapper Scripts . 146
4.25 Boot Configurations . 147

4.25.1 Create Local Repo . 148
4.25.2 Create Boot Configuration with Kickstart . 148
4.25.3 scyld-mkramfs . 149
4.25.4 scyld-bootctl . 150
4.25.5 Freezing a Boot Configuration . 153
4.25.6 Deleting Boot Configurations . 153
4.25.7 Exporting and Importing Boot Configurations Between Clusters 153
4.25.8 Using Kickstart . 154

4.25.8.1 Kickstart Files . 154
4.25.8.2 Kickstart Failing . 156

4.25.9 Using RHCOS . 156
4.26 Software Images . 157

4.26.1 Images . 157

6

4.26.1.1 Images Page . 157
4.26.1.2 Creating Images . 159
4.26.1.3 Recreating the Default Image . 160
4.26.1.4 Repos and Distros . 160
4.26.1.5 Modifying Images . 163
4.26.1.6 Caching in scyld-modimg . 164
4.26.1.7 Updating the Kernel in an Image . 165
4.26.1.8 Updating Drivers Inside Images . 166
4.26.1.9 Capturing and Importing Images . 167
4.26.1.10 Automating Common Image Tasks . 167
4.26.1.11 Deploying Images Using Ignition . 167
4.26.1.12 Freezing an Image . 169
4.26.1.13 Deleting Unused Images . 169

4.26.2 scyld-imgctl . 170
4.26.3 scyld-modimg . 171
4.26.4 Failing PXE Network Boot . 175
4.26.5 Creating Local Repositories without Internet . 176
4.26.6 Validating ClusterWare ISOs . 177

4.26.6.1 make-iso . 178
4.27 Image Sources Page . 179

4.27.1 Create a Distro . 179
4.27.2 Edit a Distro . 179
4.27.3 Delete a Distro . 180

4.27.3.1 Related Links . 180
4.28 Git Repositories . 180

4.28.1 Initial Preparation . 180
4.28.2 Locally Hosted Repositories . 180
4.28.3 Mirroring Upstream Resources . 182
4.28.4 Public Access . 182

4.29 Git Repositories Page . 183
4.29.1 Create Git Repo . 184
4.29.2 Edit Git Repo . 184
4.29.3 Clone Git Repo . 184
4.29.4 Delete Git Repo . 184
4.29.5 Related Links . 184

4.30 State Maps . 184
4.31 Grafana Telemetry Dashboard . 186

4.31.1 Introduction to Grafana and InfluxDB . 186
4.31.1.1 InfluxDB . 186
4.31.1.2 Grafana . 188

4.31.2 Grafana Setup Script . 188
4.31.2.1 Arguments . 189
4.31.2.2 Example . 189

4.31.3 Grafana Login . 189
4.31.4 Grafana Cluster Monitoring . 190

4.31.4.1 Grafana General Page . 191
4.31.4.2 Grafana Node Monitoring . 191
4.31.4.3 Grafana Alerts . 192

4.32 Workload Management . 194
4.32.1 Monitoring Scheduler Info . 194

4.32.1.1 sched-watcher Deployment . 195
4.32.1.2 Verify Data . 196
4.32.1.3 Config Settings . 196
4.32.1.4 Notes . 198

7

4.32.2 Applications Report Excessive Interruptions and Jitter . 199
4.33 Role-Based Access Control System . 199

4.33.1 Permissions . 200
4.33.2 Roles . 200
4.33.3 Modifying the Role-Permissions Mapping . 201

4.34 Administrators Page . 202
4.34.1 Add Administrator . 203
4.34.2 Edit Administrator . 203
4.34.3 Delete Administrator . 203
4.34.4 Related Links . 203

4.35 Configure Additional Cluster Administrators . 203
4.35.1 scyld-adminctl . 204

4.36 User Impersonation . 206
4.37 Integrating Keycloak with ICE ClusterWare for RBAC . 206

4.37.1 Installation . 206
4.37.2 Select a Realm . 206
4.37.3 Create a New Client . 207
4.37.4 Add Users . 207
4.37.5 Select or Create Roles . 208
4.37.6 Configuring ClusterWare Software . 208

4.37.6.1 Production Operations . 209
4.37.7 User Management . 209
4.37.8 Logging and Auditing . 210
4.37.9 Access Token Lifespan . 210

4.38 Integrating FreeIPA with ICE ClusterWare . 210
4.38.1 Installation . 210
4.38.2 Identify a Group for ClusterWare Users . 211
4.38.3 Identify an Admin Account for Keycloak . 211
4.38.4 Configure Keycloak . 211
4.38.5 Verifying the Integration . 212

4.39 Heads Page . 212
4.40 Important Files on Head Nodes . 215

4.40.1 The ~/.scyldcw/ Folder . 215
4.40.1.1 auth_tkt.cookie . 215
4.40.1.2 logs/ . 215
4.40.1.3 workspace/ . 215
4.40.1.4 parse_failures/ . 216

4.40.2 The /opt/scyld/clusterware/ Folder . 216
4.40.2.1 /opt/scyld/clusterware/bin/ . 216
4.40.2.2 /opt/scyld/clusterware/conf/ . 216
4.40.2.3 /opt/scyld/env/, modules/, and src/ . 217
4.40.2.4 /opt/scyld/clusterware/parse_failures/ . 217
4.40.2.5 /opt/scyld/clusterware/storage/ . 217
4.40.2.6 /opt/scyld/clusterware/workspace/ . 217

4.41 Managing Multiple Head Nodes . 217
4.41.1 Adding a Head Node . 218

4.41.1.1 Join a non-ClusterWare server . 218
4.41.1.2 Join a ClusterWare head node . 218
4.41.1.3 After a Join . 219
4.41.1.4 Cleaning up From Join Failures . 219

4.41.2 Removing a Joined Head Node . 220
4.41.2.1 Peer Downloads . 221

4.41.3 Booting With Multiple Head Nodes . 222
4.42 headctl . 222

8

4.43 Troubleshooting Head Nodes . 223
4.43.1 Head Node Filesystem Is 100% Full . 223

4.43.1.1 Verify Excessive Storage is Related to ClusterWare Software 223
4.43.1.2 Remove Unnecessary Objects from the ClusterWare Database 223
4.43.1.3 Investigate InfluxDB Retention of Telegraf Data 224
4.43.1.4 Remove Unnecessary Images and Repos . 225
4.43.1.5 Move Large Directories . 225

4.43.2 Head Nodes Disagree About Compute Node State . 225
4.43.2.1 Head Node Failure . 225

4.43.3 etcd Database Exceeds Size Limit . 225
4.44 Networks Page . 226

4.44.1 Create a Network . 227
4.44.2 Edit Network . 227
4.44.3 Delete Network . 227
4.44.4 Related Links . 227

4.45 Open Network Ports . 227
4.46 Providing DHCP to Additional Interfaces . 229
4.47 Exceeding System Limit of Network Connections . 230
4.48 Managing Zero-Touch Provisioning (ZTP) . 230

5 Articles 232
5.1 ICE ClusterWare Plugin System . 232

5.1.1 Status Plugins . 233
5.1.2 Hardware Plugins . 235
5.1.3 Health-Check Plugins . 236
5.1.4 Telegraf Plugins . 237
5.1.5 Creating New Plugins . 240

5.1.5.1 Creating Status Plugins . 240
5.1.5.2 Creating Hardware Plugins . 241
5.1.5.3 Creating Health-Check Plugins . 241
5.1.5.4 Creating Telegraf Plugins . 242

5.2 Using Ansible . 243
5.2.1 Using Node Attributes with Ansible . 246
5.2.2 Applying Ansible Playbooks to Images . 246

5.3 Using Singularity . 247
5.4 Using Docker for Compute Nodes . 249
5.5 Using Kubernetes . 250

5.5.1 Using a Single Non-ClusterWare System as a Control Plane 250
5.5.2 Using Multiple ClusterWare Nodes as a Control Plane . 252
5.5.3 Using Multiple Non-ClusterWare Systems as a Control Plane 253

5.6 Creating Arbitrary Rocky Images . 254
5.6.1 Using Version-Specific ISO File . 255
5.6.2 Using Publicly Available Repositories . 256

5.7 Creating Arbitrary RHEL Images . 256
5.8 Creating Ubuntu and Debian Images . 259

5.8.1 UBUNTU . 259
5.8.2 DEBIAN . 259

5.9 Converting CentOS 8 to Alternative Distro . 259
5.10 Using Docker for Head Nodes . 260

5.10.1 Install the Foundational Packages . 260
5.10.2 Download and Load the ClusterWare Docker Image . 261
5.10.3 Start the Container . 261
5.10.4 Configure the Container . 261
5.10.5 Stopping and Restarting the Container . 263

9

5.10.6 The Container Storage Area . 263
5.10.7 Known Issues . 263

6 API Reference 265
6.1 Authentication . 266

6.1.1 Username/Password Authentication . 267
6.1.2 Token Refresh . 268
6.1.3 Alternate Authentication Methods . 268

6.2 Basic Operations . 268
6.2.1 List Objects . 269
6.2.2 Create New Object . 269
6.2.3 Get Object Info . 269
6.2.4 Update Object . 270
6.2.5 Delete Object . 270
6.2.6 Metadata Information . 270

6.3 Admin Objects . 271
6.3.1 Data Fields . 271
6.3.2 Additional Endpoints . 271
6.3.3 Example . 272

6.4 Node Objects . 273
6.4.1 Data Fields . 273
6.4.2 Additional Endpoints . 274
6.4.3 Example . 276

6.5 Attribute-Group Objects . 277
6.5.1 Data Fields . 277
6.5.2 Additional Endpoints . 278
6.5.3 Example . 278

6.6 Boot Config Objects . 280
6.6.1 Data Fields . 280
6.6.2 Additional Endpoints . 281
6.6.3 Example . 282

6.7 Image Objects . 283
6.7.1 Data Fields . 283
6.7.2 Additional Endpoints . 283
6.7.3 Example . 284

6.8 Dynamic Group Objects . 285
6.8.1 Data Fields . 285
6.8.2 Additional Endpoints . 285
6.8.3 Example . 285

6.9 Naming Pool Objects . 286
6.9.1 Data Fields . 286
6.9.2 Additional Endpoints . 287
6.9.3 Example . 287

6.10 Software Repository Objects . 288
6.10.1 Data Fields . 288
6.10.2 Additional Endpoints . 289

6.11 Software Distribution Objects . 289
6.11.1 Data Fields . 289
6.11.2 Additional Endpoints . 289

6.12 State Set Objects . 290
6.12.1 Data Fields . 290
6.12.2 Additional Endpoints . 290
6.12.3 Example . 290

6.13 Network Objects . 291

10

ICE ClusterWare Documentation, Release 12.4.0

6.13.1 Data Fields . 291
6.13.2 Additional Endpoints . 292

6.14 Git Repository Objects . 292
6.14.1 Data Fields . 292
6.14.2 Additional Endpoints . 293

6.15 Hostname Objects . 294
6.15.1 Data Fields . 294
6.15.2 Additional Endpoints . 295
6.15.3 Example . 295

6.16 Cluster-wide Endpoints . 295
6.17 Head Node Endpoints . 297

6.17.1 Data Fields . 297
6.17.2 Additional Endpoints . 297

6.18 Boot-time Support Endpoints . 298
6.18.1 Client Download Endpoints . 300

7 Release Notes, Changelog, and Known Issues 301
7.1 Release Notes . 301
7.2 Changelog . 301

7.2.1 12.4.0-g0000 - February 3, 2025 . 302
7.2.2 12.3.0-g0000 - October 4, 2024 . 303
7.2.3 12.2.0-g0000 - July 26, 2024 . 304
7.2.4 12.1.1-g0000 - January 23, 2024 . 305
7.2.5 12.1.0-g0000 - December 28, 2023 . 305
7.2.6 12.0.1-g0000 - July 24, 2023 . 306
7.2.7 12.0.0-g0000 - April 21, 2023 . 306

7.3 Known Issues And Workarounds . 307

8 Frequently Asked Questions (FAQ) 309
8.1 Software Install/Update . 309
8.2 Cluster Management . 309
8.3 Manipulating Compute Node Images . 310
8.4 Issues with Interacting with Compute Nodes . 310

9 License Agreements 311
9.1 End-User License Agreement . 311
9.2 Third-Party License Agreements . 314

10 Feedback 321
10.1 Finding Further Information . 321
10.2 Contacting Penguin Computing Support . 321

CONTENTS 11

CHAPTER

ONE

ICE CLUSTERWARE OVERVIEW

The ICE ClusterWare™ platform provides the tools (commonly named with prefix scyld-) and services (such as the
key-value database) for a cluster administrator to install, administer, and monitor a Beowulf-style cluster. A cluster
administrator commonly employs a shell on a head node to perform these functions. The ClusterWare platform addi-
tionally distributes packages for an administrator to install an optional job manager (for example, Slurm, OpenPBS,
TORQUE), Kubernetes, and several varieties of OpenMPI-family software stacks for user applications. The Adminis-
tration describes this with much greater detail.

1.1 Cluster Architecture Overview
A minimal ClusterWare cluster consists of a head node and one or more compute nodes, all interconnected via a private
cluster network. User applications generally execute on the compute nodes, are often multithreaded across multiple
compute nodes, and are usually coordinated by a job scheduler.

12

ICE ClusterWare Documentation, Release 12.4.0

The head node is responsible for provisioning compute nodes, beginning with responding to a compute node's DHCP
request for an IP address, and then (depending upon the compute node's BIOS settings) the compute node either boots
from its local storage, or the compute node makes PXEboot requests for the kernel, initrd, and root filesystem images.

A ClusterWare head node usually also functions as a server for:

• The distributed Key/Value Database, which is implemented by the ClusterWare database and is accessed through

1.1. Cluster Architecture Overview 13

ICE ClusterWare Documentation, Release 12.4.0

the REST API via command line tools or graphical user interface. It is the repository for information such as:

– The MAC address to IP address and node number mappings.

– The locations of the storage for the kernel, initrd, and root filesystem images.

– Compute node attributes, basic hardware and status, and configuration details.

• The storage for the images themselves.

• The compute node status information, which can be visualized by shell commands or by graphical tools.

• The compute node monitoring information, which is implemented by Grafana, Telegraf, and InfluxDB.

• Optional network storage, such as an NFS server.

A ClusterWare head node expects to execute in a Red Hat RHEL or CentOS 8.0 or later, Oracle Linux 8.3 to 8.6, or
Rocky 8.4 or later environment.

Visit https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/ to view the Red Hat Enterprise Linux
RHEL8 Release Notes and other useful documents, including the Migration Planning Guide and System Adminis-
trator's Guide.

A more complex cluster can be High Availability (HA), consisting of multiple head nodes where each head node has
access to the distributed database and shared image storage. In an active-active(-active....) relationship, each head
node can manage any compute node, providing it with boot files and forwarding its status information into the shared
database. Since no particular head node is specifically necessary to manage an individual compute node, then any head
node can take over responsibility for the compute nodes that were previously communicating with a now-failed head
node.

ò Note

Some network protocols, such as iSCSI, do not easily handle this sort of handoff, and any clusters using these
protocols may experience additional difficulties on head node failure.

A complex cluster can also employ separate servers for the network storage, the compute node status information, and
the boot images storage. For example:

14 Chapter 1. ICE ClusterWare Overview

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/

ICE ClusterWare Documentation, Release 12.4.0

An even more complex cluster may employ high-performance networking, such as Infiniband, Omni-Path, or even
40GB/sec or faster Ethernet, in addition to the typical 1Gb/sec or 10Gb/sec Ethernet that commonly interconnects
nodes on the private cluster network. This faster (and more expensive) network fabric typically interconnects the

1.1. Cluster Architecture Overview 15

ICE ClusterWare Documentation, Release 12.4.0

compute nodes and commonly also shared cluster-wide storage.

The head node(s) commonly also have IPMI access to each compute node's Base Management Controller (BMC), which
provides for command-line or programmatic access to the compute nodes at a more basic hardware level, allowing for
remote control of power, forcing a reboot, viewing hardware state, and more.

Some complex clusters connect head nodes to the public internet via a gateway, for example, to allow a cluster admin-
istrator to use yum to install or update software from internet-accessible websites. Other complex clusters provide no
head node access to the internet and keep software hosted on a cluster-internal mirror server, where the local cluster
administrator has precise control over updates.

For example:

1.2 The ClusterWare Database
The ClusterWare database is stored as JSON content within a replicated document store distributed among the Clus-
terWare head nodes. This structure protects against the failure of any single head node.

The module API is intended to present a consistent experience regardless of the backend database, although some

16 Chapter 1. ICE ClusterWare Overview

ICE ClusterWare Documentation, Release 12.4.0

details, such as failure modes, will differ.

The server side (head node) responses to specific steps in the PXE boot process are controlled by the cluster configura-
tion stored as JSON documents (aka objects) in the database. The following sections will follow the order of the boot
steps described above to explore the definition and use of these database objects.

Internally, database objects are identified by unique identifiers (UIDs). These UIDs are also used to identify objects in
ClusterWare command line and GUI tools, although as these strings tend to be cumbersome, an administrator should
also assign a name and an optional description to each object. Even when objects are listed by name, the UID is
available in the uid field returned by the object query tools.

Database objects generally consist of name-value pairs arranged in a JSON dictionary and referred to here as fields.
These fields can be set via using the update argument of the appropriate scyld-* command line tools or by editing
object details through the GUI. Field names are all lower case with underscores separating words. Not all fields on all
objects will be editable - for example, node names that are assigned based on the naming pool and node index.

Whenever a name-value pair is updated or added, a last_modified field in the mapping is also updated. These
last_modified fields can be found scattered throughout the database objects.

1.3 Provisioning Compute Nodes
A principal responsibility of a head node is to provision compute nodes as they boot. A compute node's BIOS can be
configured to boot from local storage (such as a harddrive) or to "PXEboot" by downloading the necessary images from
a head node.

Each compute node is represented by a uniquely identified node object in the ClusterWare database. This object contains
the basics of node configuration, including the node's index and the MAC address that is used to identify the node during
the DHCP process. An administrator can also set an explicit IP address in the ip field. This IP address should be in the
DHCP range configured during head node installation, although if none is specified, then a reasonable default will be
selected based on the node index.

Each compute node is associated with a specific boot configuration, each stored in the ClusterWare database. A boot
configuration ties together a kernel file, an initramfs file, and a cmdline, together with a reference to a root file system
rootfs image. This rootfs is also known as a boot image, root image, or node image. A boot configuration also includes
a configurable portion of the kernel command line that will be included in the iPXE boot script.

For a PXEboot, after the DHCP reply establishes the compute node's IP address, the node requests a loader program,
and the ClusterWare head node responds by default with the Open Source iPXE loader, and a configuration file that
identifies the kernel and initramfs images to download, and a kernel command line to pass to the booting kernel.

This kernel executes and initializes itself, then launches the init user program (provided by dracut), which in turn exe-
cutes various scripts to initialize networking and other hardware, and eventually executes a ClusterWare mount_rootfs
script, which downloads the rootfs image and sets up the node's root filesystem.

The mount_rootfs script may download and unpack a root filesystem image file, or alternatively may mount an
iSCSI device or an image cached on a local harddrive, and then switch the node's root from the initramfs to
this final root image. Other than when unpacking a root filesystem into RAM, images are shared and compute
nodes are restricted to read-only access. In these cases compute nodes must use a writable overlay for modifi-
able portions of the file system. This is done toward the end of the mount_rootfs script via either the rwtab ap-
proach (for example, see https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/managing_file_
systems/setting-read-only-permissions-for-the-root-file-system_managing-file-systems) or more commonly using an
overlayfs (see https://www.kernel.org/doc/Documentation/filesystems/overlayfs.txt).

1.3. Provisioning Compute Nodes 17

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/managing_file_systems/setting-read-only-permissions-for-the-root-file-system_managing-file-systems
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/managing_file_systems/setting-read-only-permissions-for-the-root-file-system_managing-file-systems
https://www.kernel.org/doc/Documentation/filesystems/overlayfs.txt

CHAPTER

TWO

QUICKSTART

The following is a brief example of creating a minimal, yet functional, ICE ClusterWare™ cluster. No attempt is made
here to explain the full breadth and depth of the ClusterWare platform, which is extensively discussed in the remainder
of the documentation. This Quickstart assumes the reader is familiar with administering Red Hat RHEL or CentOS
servers. For readers who are unfamiliar with clusters, see Cluster Architecture Overview.

2.1 Prerequisites
Prerequisites for this minimal cluster:

• A minimum of two x86_64 servers, and preferably three: one becomes a ClusterWare head node and the remain-
der become ClusterWare compute nodes. This Quickstart example uses three servers.

• The head node can be a bare metal server, although there is greater flexibility if it is a virtual machine. It should
have a minimum of 4GB of RAM and 16GB of storage, and it must have an Ethernet controller connected to
a private cluster network to communicate with the compute node(s). These are minimal requirements. See
Required and Recommended Components for recommendations for a production cluster.

• The head node must be running Red Hat RHEL or CentOS 8.0 (or newer) or an equivalent distribution (see Sup-
ported Distributions and Features). It must have access to a repo for that base distribution so that the ClusterWare
platform can yum install additional packages.

• If you do not already have a ClusterWare repo for ClusterWare packages, then the scyld-install installer
prompts the user for an appropriate userid/password authentication and builds the ClusterWare repo in /etc/
yum.repos.d/clusterware.repo. Typically access to the ClusterWare packages is through a second Ethernet
controller connected to the "outside world", that is, the internet.

• The compute node(s) must have their BIOS configured to PXEboot by default, using either "Legacy" or "UEFI"
mode. They should have a minimum of 4GB of RAM and one Ethernet controller that is also physically connected
to the same private cluster network. See Required and Recommended Components for recommendations for a
production cluster.

2.2 Create Administrator
A ClusterWare cluster administrator needs root privileges. Common practice is to create non-root administrators and
give them sudo capability. For example, create an administrator user admin1:

useradd admin1 # create the user
passwd admin1 # and give it a password

Give "admin1" full root sudo privileges
echo "admin1 ALL=(root) NOPASSWD: ALL" >> /etc/sudoers

(continues on next page)

18

ICE ClusterWare Documentation, Release 12.4.0

(continued from previous page)

Now execute as that user "admin1"
su - admin1
And add SSH key pairs (defaulting to /home/admin1/.ssh/id_rsa)
ssh-keygen

2.3 Install ClusterWare
Create a cluster configuration text file that names the interface to the private cluster network, the IP address on that
network for the first compute node, and a list of MAC addresses to use as compute nodes. For example:

cat <<-EOF >/tmp/cluster-conf
iprange 10.54.60.0 # starting IP address of node 0
node 52:54:00:a6:f3:3c # node 0 MAC address
node 40:8d:5c:fa:ea:c3 # node 1 MAC address
EOF

Now install the clusterware-installer package using the ClusterWare /etc/yum.repos.d/clusterware.repo repo
file:

sudo yum install clusterware-installer

That package contains the scyld-install script that you execute to install the software and create the DefaultImage,
which consists of a basic compute node file system image, and the DefaultBoot config file, which references that
DefaultImage and contains various boot-time information such as a kernel commandline to pass to a booting node.

For a simple installation:

Reminder: you should be executing as user "admin1"
scyld-install --config /tmp/cluster-conf

By default the DefaultImage contains a kernel and rootfs software from the same base distribution installed on the head
node, although if the head node executes RHEL8, then no DefaultImage and DefaultBoot are created.

Alternatively, for more flexibility (especially with a RHEL8 head node), execute the installer with an additional option
that identifies the base distribution to be used for the DefaultImage:

scyld-install --config /tmp/cluster-conf --os-iso <ISO-file>

where <ISO-file> is either a pathname to an ISO file or a URL of an ISO file of a specific base distribution release, for
example, --os-iso rhel-8.5-x86_64-dvd.iso. That ISO can match the head node's base distribution or can be
any distribution supported by Penguin Computing (see Supported Distributions and Features).

Now you have a basic 2-node cluster that should PXEboot compute nodes. The installer has created a DefaultImage that
contains basic compute node software and a DefaultBoot config file for booting that image, and has initialized every
node to PXEboot using the DefaultBoot. Validate your current setup by rebooting both compute nodes, and check the
status of the nodes as they boot and connect to the head node:

scyld-nodectl status --refresh
Use ctrl-c to exit this display

which initially shows:

2.3. Install ClusterWare 19

ICE ClusterWare Documentation, Release 12.4.0

Node status [date & time]
--
n[0-1] new

for the nodes n0 and n1, and automatically updates as each node's status changes from booting to up. The per-node
transition from new to booting consumes a minute or more doing hardware initialization, PXEboot provisioning, and
early software init. The transition from booting to up consumes another minute or more. If the nodes do not boot, then
see Failing PXE Network Boot.

You can view information about the up nodes by executing:

scyld-nodectl ls -L
which is shorthand for `scyld-nodectl list --long-long`

scyld-nodectl status -L

2.4 Configure Boot Image and Job Scheduler
Now enhance the functionality of the compute node software by installing the Slurm job scheduler and an OpenMPI
software stack into the image that PXEboots. Best practice is to retain the original DefaultImage and DefaultBoot as a
pristine starting point for future additional software enhancements, so copy these Default objects and modify just the
copies:

scyld-imgctl -i DefaultImage clone name=NewImage
scyld-bootctl -i DefaultBoot clone name=NewBoot
The NewBoot clone is initially associated with the DefaultImage,
so change that:
scyld-bootctl -i NewBoot update image=NewImage
Instruct all compute nodes to use "NewBoot" (instead of "DefaultBoot"):
scyld-nodectl --all set _boot_config=NewBoot

Add the head node to /etc/hosts and then restart the clusterware-dnsmasq service. Suppose the head node's private
cluster network IP address is "10.54.0.60":

echo "10.54.0.60 $(hostname)" | sudo tee -a /etc/hosts
sudo systemctl restart clusterware-dnsmasq

Now install and configure Slurm, which is one of the ClusterWare-supported job schedulers. The scyld-install
installer has disabled the ClusterWare repo (for an explanation, see Additional Software) so we must explicitly enable
the repo:

sudo yum install slurm-scyld --enablerepo=scyld*

Perform the Slurm initialization
slurm-scyld.setup init

Add Slurm client software to the NewImage
slurm-scyld.setup update-image NewImage

Reboot the nodes and view their status as they boot
scyld-nodectl --all reboot
scyld-nodectl status --refresh
And ctrl-c when both rebooting nodes are again "up"

(continues on next page)

20 Chapter 2. Quickstart

ICE ClusterWare Documentation, Release 12.4.0

(continued from previous page)

Check the job scheduler status
slurm-scyld.setup status
If the Slurm daemon and munge are not both executing, then:
slurm-scyld.setup cluster-restart
And check status again
slurm-scyld.setup status
sinfo

Configure the cluster to support OpenMPI multi-threaded communication between compute nodes using the ssh trans-
port mechanism, which requires user uid/gid and passphrase-less key-based access. For this Quickstart we will continue
to use admin1 as the user. Add admin1's authentication to the NewImage:

/opt/scyld/clusterware-tools/bin/sync-uids \
-i NewImage --create-homes \
--users admin1 --sync-key admin1=/home/admin1/.ssh/id_rsa.pub

Install OpenMPI 4.0 into NewImage using chroot:

scyld-modimg -i NewImage --chroot --no-discard --overwrite --upload
Inside the chroot you are executing as user root
yum install openmpi4.0

Set up access to Slurm and OpenMPI for "admin1"
echo "module load slurm" >> /home/admin1/.bashrc
echo "module load openmpi" >> /home/admin1/.bashrc

Build an example OpenMPI application
cd /opt/scyld/openmpi/*/gnu/examples
yum install make
module load openmpi
make hello_c
For simplicity, copy the executable to /home/admin1/hello_c
cp hello_c /home/admin1/hello_c

exit # from the chroot

Reboot the nodes with the updated NewImage:

scyld-nodectl --all reboot
Observe the node status changes
scyld-nodectl status --refresh
And ctrl-c when both rebooting nodes are again "up"

From the head node, verify this by using Slurm to execute programs on the compute nodes:

module load slurm

Verify basic Slurm functionality by executing a simple command on each node
srun -N 2 hostname

Use Slurm to execute one "Hello World" program on each of the two nodes
srun -N 2 hello_c

2.4. Configure Boot Image and Job Scheduler 21

CHAPTER

THREE

INSTALL

The Overview describes the ICE ClusterWare™ system architecture and design and basic terminology necessary to
properly configure and administer a ClusterWare cluster.

This Install Guide is intended for use by ClusterWare administrators. As is typical for any Linux-based system, the
administrator must have root privileges (if only via sudo) to perform many of the tasks described in this document.

This guide provides specific information about tools and methods for setting up the cluster, security considerations,
and optional tools that can be useful in administrating your cluster.

This guide is written with the assumption that the administrator has a background in a Unix or Linux operating en-
vironment; therefore, the document does not cover basic Linux system administration. If you do not have sufficient
knowledge for using or administering a Linux system, we recommend that you first study other resources, either in print
or online.

When appropriate, this document refers the reader to other parts of the documentation set for more detailed explana-
tions for various topics, such as the Administration Guide, which provides greater details about cluster administration,
commands, and GUI features.

3.1 Supported Distributions and Features
Unless otherwise noted, the ICE ClusterWare™ platform is principally supported for the x86_64 architecture.

It has been additionally tested on the aarch64 architecture using Rocky 8.5. If you are interested in a cluster using that
architecture or a mix of architectures, please contact Penguin Computing.

Entires marked as probable are RHEL clones and probably work, although they are not explicitly tested by Penguin
Computing.

22

ICE ClusterWare Documentation, Release 12.4.0

PENGUIN-VERIFIED DISTROS Head Nodes Compute Nodes
Distro Version Node Image Kickstart Local Install
RHEL/CentOS 7.0 - 7.91 no yes yes yes
RHEL 8.0 - 8.10 yes yes yes yes
RHEL 9.0 - 9.5 yes yes yes yes
CentOS 8.0 - 8.52 yes yes yes yes
Rocky 8.4 - 8.10 yes yes yes yes
Rocky 9.0 - 9.5 yes yes yes yes
CentOS Stream 83 yes yes yes yes
CentOS Stream 94 yes yes yes yes
Oracle 8.3 - 8.6 probable probable yes yes
AlmaLinux 8.4 - 8.7 probable probable yes yes
AlmaLinux 9.0 - 9.1 probable probable yes yes
OpenSUSE Leap 15.2 - 15.4 no yes yes yes
Ubuntu 18 - 24 LTS no yes no yes
Debian stable, testing no yes no yes

Footnotes
[1] Since RHEL / CentOS 7 have reached end of maintenance they are

no longer supported as head nodes. These versions
are still temporarily supported as compute node images.

[2] CentOS 8 can be converted to an alternative distro.
See "Appendix: Converting CentOS 8 to Alternative Distro".

[3] CentOS Stream 8 was confirmed supported as of December 26, 2023.
[4] CentOS Stream 9 was confirmed supported as of December 26, 2023.

RHEL9-clone compute node boot images cannot be built by RHEL7-clone head nodes.

Entries marked both indicate that Penguin Computing tests and supports both SELinux Targeted and MLS policies.

PENGUIN-VERIFIED SECURITY Head Nodes Compute Nodes
OS Distro Version(s) FIPS Mode SELinux FIPS Mode SELinux
RHEL/CentOS 7.0 - 7.5 no no yes both
RHEL/CentOS 7.6 - 7.9 yes both yes both
RHEL 8.0 - 8.9 yes both yes both
RHEL 9.0 - 9.3 yes both yes both
CentOS 8.0 - 8.71 yes both yes both
Rocky 8.4 - 8.9 yes both yes both
Rocky 9.0 - 9.3 yes both yes both
CentOS Stream 82 probable probable yes both
CentOS Stream 93 probable probable yes both
Oracle 7.9 probable probable yes both
Oracle 8.3 - 8.7 probable probable yes both
AlmaLinux 8.4 - 8.7 probable probable yes both
AlmaLinux 9.0 - 9.1 probable probable yes both

Footnotes
[1] CentOS 8 can be converted to an alternative distro.

See "Appendix: Converting CentOS 8 to Alternative Distro".
(continues on next page)

3.1. Supported Distributions and Features 23

ICE ClusterWare Documentation, Release 12.4.0

(continued from previous page)

[2] CentOS Stream 8 was confirmed supported as of December 26, 2023.
[3] CentOS Stream 9 was confirmed supported as of December 26, 2023.

CLUSTERWARE-DISTRIBUTED SCHEDULERS
OS Distro PBS TORQUE Slurm OpenPBS
RHEL/CentOS 6
RHEL/CentOS 7 6 18-23
RHEL/CentOS 8 20-23 20
RHEL/CentOS 9 20-23 20

CLUSTERWARE-DISTRIBUTED MIDDLEWARE
OS Distro OpenMPI MPICH MVAPICH
RHEL/CentOS 6
RHEL/CentOS 7 1, 2, 3, 4 4.1 2.3
RHEL/CentOS 8 3, 4 4.1 2.3
RHEL/CentOS 9 4 4.1 2.3

3.2 Required and Recommended Components
ICE ClusterWare™ head nodes are expected to use x86_64 processors running a Red Hat RHEL, Rocky, or similar
distribution. See Supported Distributions and Features for specifics.

s Important

ClusterWare head nodes currently require a Red Hat RHEL or Rocky 8.4 (or later) or CentOS Stream 8 (or later)
base distribution environment due to dependencies on newer selinux packages. This requirement only applies to
head nodes, not compute nodes.

s Important

By design, ClusterWare compute nodes handle DHCP responses on the private cluster network (bootnet) by em-
ploying the base distribution's facilities, including NetworkManager. If your cluster installs a network file system
or other software that disables this base distribution functionality, then dhclient or custom static IP addresses, and
potentially additional workarounds, must be configured.

ClusterWare head nodes should ideally be "lightweight" for simplicity and contain only software that is needed for
the local cluster configuration. Non-root users typically do not have direct access to head nodes and do not execute
applications on head nodes.

Head node components for a production cluster:

• x86_64 processor(s) are required, with a minimum of four cores recommended.

• 8GB RAM (minimum) is recommended.

• 100GB fast storage (minimum) is recommended. All storage should be backed by NVMe or other performant
technology.

24 Chapter 3. Install

ICE ClusterWare Documentation, Release 12.4.0

The largest storage consumption contains packed images, uploaded ISOs, et al. Its location is set in the file
/opt/scyld/clusterware/conf/base.ini and defaults to /opt/scyld/clusterware/storage/.

The directory /opt/scyld/clusterware/git/cache/ consumes storage roughly the size of the git repos
hosted by the system.

Other than the above storage/ and cache/, the directory /opt/scyld/ consumes roughly 300MB.

Each administrator's ~/.scyldcw/workspace/ directory contains unpacked images that have been downloaded
by an administrator for modification or viewing.

• One Ethernet controller (required) that connects to the private cluster network which interconnects the head
node(s) with all compute nodes.

• A second Ethernet controller (recommended) that connects a head node to the Internet.

Multiple Ethernet or other high-performance network controllers (for example, Infiniband, Omni-Path) are common
on the compute nodes, but do not need to be accessible by the head node(s).

We recommend employing virtual machines, hosted by "bare metal" hypervisors, for head nodes, login nodes,
job scheduler servers, etc., for ease of management. Virtual machines are easy to resize and easy to mi-
grate between hypervisors. See https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/
virtualization_deployment_and_administration_guide/ for basic Red Hat documentation.

ò Note

A bare metal hypervisor host must contain the aggregated resources required by each hosted virtual server, and
ideally the aggregated recommended resources, plus several additional CPUs/cores and RAM resources devoted to
the hypervisor functionality itself.

ò Note

The nmcli connection add tool can be used to create network bridges and to add physical interfaces to those
newly created bridges. Once appropriate bridges exist, the virt-install command can attach the virtual inter-
faces to the bridges, so that the created virtual machines exist on the same networks as the physical interfaces on
the hypervisor.

A High Availability ("HA") cluster requires a minimum of three "production" head nodes, each a virtual machine hosted
on a different bare metal hypervisor. Even if an HA cluster is not required, we recommend a minimum of two head
nodes - one functioning as the production head node, and the other as a development head node that can be used to test
software updates and configuration changes prior to updating the production node to the validated final updates.

Compute nodes are generally bare metal servers for optimal performance. See Supported Distributions and Features
for a list of supported distributions.

See ICE ClusterWare Overview for more details.

3.3 Install ICE ClusterWare
The ICE ClusterWare™ scyld-install script installs the necessary packages from the ClusterWare yum repositories,
and installs dependency packages as needed from the base distribution (for example, Red Hat RHEL or Rocky) yum
repositories.

3.3. Install ICE ClusterWare 25

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_deployment_and_administration_guide/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_deployment_and_administration_guide/

ICE ClusterWare Documentation, Release 12.4.0

s Important

Do not install the ClusterWare platform as an upgrade to an existing ClusterWare 6 or 7 installation. Instead,
install the ClusterWare platform on a non-ClusterWare system that ideally is a virtual machine. (See Required and
Recommended Components.)

s Important

The head node(s) must use a Red Hat RHEL- or CentOS-equivalent base distribution release 8.4 or later environ-
ment, due to dependencies on newer selinux packages.

ò Note

Clusters commonly employ multiple head nodes. The instructions in this section describe installing the ClusterWare
platform on the first head node. To later install on additional head nodes, see Managing Multiple Head Nodes.

scyld-install anticipates being potentially executed by a non-root user, so ensure that your userid can execute
sudo. Additionally, if using sudo behind a proxy, then because sudo clears certain environment variables for security
purposes, the cluster administrator should consider adding several lines to /etc/sudoers:

Defaults env_keep += "HTTP_PROXY http_proxy"
Defaults env_keep += "HTTPS_PROXY https_proxy"
Defaults env_keep += "NO_PROXY no_proxy"

s Important

Various commands that manipulate images execute as user root, thereby requiring that the commands internally use
sudo and requiring that user root must have access to the administrator's workspace which contains the adminis-
trator's images. Typically the per-user workspace is ~/.scyldcw/workspace/. If that directory is not accessible
to the command executing as root, then another accessible directory can be employed, and the administrator can
identify that alternative pathname by adding a modimg.workspace setting to ~/.scyldcw/settings.ini.

s Important

scyld-install uses the yum command to access the ClusterWare platform and potentially various other repos-
itories (for example, Red Hat RHEL or Rocky) that by default normally reside on Internet websites. However, if
the head node(s) do not have Internet access, then the required repositories must reside on local storage that is
accessible by the head node(s). See Creating Local Repositories without Internet.

3.3.1 Download the ICE ClusterWare Install Script and Related Files
Most commonly, first download a ICE ClusterWare™ yum repo configuration file that is already customized for your
cluster, containing an appropriate authentication token granting access to the various ClusterWare yum repo directories.
That authentication token is the cluster serial number provided by Penguin Computing.

• Login to the Penguin Computing Support Portal at https://www.penguinsolutions.com/computing/support/
technical-support/.

26 Chapter 3. Install

https://www.penguinsolutions.com/computing/support/technical-support/
https://www.penguinsolutions.com/computing/support/technical-support/

ICE ClusterWare Documentation, Release 12.4.0

• Click on the Assets tab, and then select a specific Asset Name.

• In the Asset Detail section, click on YUM Repo File, which downloads an asset-specific clusterware.repo
file.

• Move that downloaded file to /etc/yum.repos.d/clusterware.repo.

• Verify clusterware.repo permissions and ownership by installing the clusterware-installer package, which
contains the scyld-install script.

For example:

cd /tmp
Expecting the desired clusterware.repo file to now reside in /tmp
sudo chmod 644 clusterware.repo
sudo chown root:root clusterware.repo
sudo cp -a clusterware.repo /etc/yum.repos.d/clusterware.repo
sudo yum install clusterware-installer

Alternatively, if Penguin Computing has transmitted (e.g., by email) a custom clusterware.repo file to you, then as
described above, move that file to /etc/yum.repos.d/clusterware.repo, install the clusterware-installer RPM,
and then execute the /usr/bin/scyld-install script contained in that RPM.

Less commonly, download the scyld-install script directly from the Penguin Computing yum repository. When ex-
ecuted, that script queries the user for the appropriate authentication token (cluster serial number) provided by Penguin
Computing, and uses that to create an appropriate /etc/yum.repos.d/clusterware.repo. For example, download
and prepare the scyld-install script:

cd /tmp
wget https://updates.penguincomputing.com/clusterware/12/installer/scyld-install
or download with *curl* or equivalent
chmod +x scyld-install

3.3.2 Execute the ICE ClusterWare Install Script
If /etc/yum.repos.d/clusterware.repo exists, then scyld-install's subsequent invocations of yum will em-
ploy that configuration file. If /etc/yum.repos.d/clusterware.repo does not exist, then scyld-install
prompts the user for an appropriate authentication token and uses that to build a /etc/yum.repos.d/clusterware.
repo that is customized to your cluster.

scyld-install accepts an optional argument specifying a cluster configuration file that contains information neces-
sary to set up the DHCP server. For example:

cat <<-EOF >/tmp/cluster-conf
interface enp0s9 # names the private cluster interface
nodes 4 # max number of compute nodes
iprange 10.10.32.45 # starting IP address of node 0
node 08:00:27:f0:44:35 # node 0 MAC address
node 08:00:27:f0:44:45 # node 1 MAC address
node 08:00:27:f0:44:55 # node 2 MAC address
node 08:00:27:f0:44:65 # node 3 MAC address
EOF

where the syntax of this cluster configuration file is:

domain <DOMAIN_NAME>

Optional. Defaults to "cluster.local".

3.3. Install ICE ClusterWare 27

ICE ClusterWare Documentation, Release 12.4.0

interface <INTERFACE_NAME>

Optional. Specifies the name of head node's interface to the private cluster network, although that can be
determined from the specification of the <FIRST_IP> in the iprange line.

nodes <MAX_COUNT>

Optional. Specifies the max number of compute nodes, although that can be determined from the iprange
if both the <FIRST_IP> and <LAST_IP> are present. The max will also adjust as-needed if and when
additional nodes are defined. For example, see Node Creation with Known MAC address(es).

iprange <FIRST_IP> [<LAST_IP>]

Specifies the IP address of the first node (which defaults to n0) and optionally the IP address of the last
node. The <LAST_IP> can be deduced from the <FIRST_IP> and the nodes <MAX_COUNT>. The
<FIRST_IP> can include an optional netmask via a suffix of /<BIT_COUNT> (e.g., /24) or a mask (e.g.,
/255.255.255.0).

<FIRST_INDEX> <FIRST_IP> [<LAST_IP>] [via <FROM_IP>] [gw <GATEWAY_IP>]

This is a more elaborate specification of a range of IP addresses, and it is common when using DHCP relays
or multiple subnets. <FIRST_INDEX> specifies that the first node in this range is node n<FIRST_INDEX>
and is assigned IP address <FIRST_IP>; optionally specifies that the range of nodes make DHCP client
requests that arrive on the interface that contains <FROM_IP>; optionally specifies that each DHCP'ing
node be told to use <GATEWAY_IP> as their gateway, which otherwise defaults to the IP address (on the
private cluster network) of the head node.

For example: 128 10.10.24.30/24 10.10.24.100 via 192.168.65.2 gw 10.10.24.254 de-
fines a DHCP range of 71 addresses, the first starting with 10.10.24.30, and assigns the first node in the
range as n128; watches for DHCP requests arriving on the interface containing 192.168.65.2; and tells
these nodes to use 10.10.24.254 as the their gateway.

node [<INDEX>] <MAC> [<MAC>]

One compute node per line, and commonly consisting of multiple node lines, where each DHCP'ing node
is recognized by its unique MAC address and is assigned an IP address using the configuration file spec-
ifications described above. Currently only the first <MAC> is used. An optional <INDEX> is the index
number of the node that overrides the default of sequentially increasing node number indices and thereby
creates a gap of unassigned indices. For example, a series of eight node lines without an <INDEX> that
is followed by node 32 52:54:00:c4:f7:1e creates a gap of unassigned indices n8 to n31 and assigns
this node as n32.

ò Note

ICE ClusterWare™ yum repositories contain RPMs that duplicate various Red Hat EPEL RPMs, and these Cluster-
Ware RPMs get installed or updated in preference to their EPEL equivalents, even if /etc/yum.repos.d/ contains
an EPEL .conf file.

ò Note

The ClusterWare platform employs userid/groupid 539 to simplify communication between the head node(s) and
the backend shared storage where it stores node image files, kernels, and initramfs files. If the scyld-install
script detects that this uid/gid is already in use by other software, then the script issues a warning and chooses an
alternative new random uid/gid. The cluster administrator needs to set the appropriate permissions on that shared
storage to allow all head nodes to read and write all files.

28 Chapter 3. Install

ICE ClusterWare Documentation, Release 12.4.0

The ClusterWare database is stored as JSON content within a replicated document store distributed among the Clus-
terWare head nodes. This structure protects against the failure of any single head node.

For example, using the cluster-config created above, install the ClusterWare platform from a yum repo:

scyld-install --config /tmp/cluster-conf

By default scyld-install creates the DefaultImage that contains a kernel and rootfs software from the same base dis-
tribution installed on the head node, although if the head node executes RHEL8, then no DefaultImage and DefaultBoot
are created.

Alternatively, for more flexibility (especially with a RHEL8 head node), execute the installer with an additional option
that identifies the base distribution to be used for the DefaultImage:

scyld-install --config /tmp/cluster-conf --os-iso <ISO-file>

where <ISO-file> is either a pathname to an ISO file or a URL of an ISO file. That ISO can match the head node's
distribution or can be any supported distribution.

scyld-install unpacks an embedded compressed payload and performs the following steps:

• Checks for a possible newer version of the clusterware-installer RPM. If one is found, then the script will update
the local RPM installation and execute the newer scyld-install script with the same arguments. An optional
argument --skip-version-check bypasses this check.

• An optional argument --yum-repo /tmp/clusterware.repo re-installs a yum repo file to /etc/yum.
repos.d/clusterware.repo. This is unnecessary if /etc/yum.repos.d/clusterware.repo already ex-
ists and is adequate.

• Checks whether the clusterware RPM is installed.

• Confirms the system meets various minimum requirements.

• Installs the clusterware RPM and its supporting RPMs.

• Copies a customized Telegraf configuration file to /etc/telegraf/telegraf.conf

• Enables the tftpd service in xinetd for PXE booting.

• Randomizes assorted security-related values in /opt/scyld/clusterware/conf/base.ini

• Sets the current user account as a ClusterWare administrator in /opt/scyld/clusterware/conf/base.ini.
If this is intended to be a production cluster, then the system administrator should create additional ClusterWare
administrator accounts and clear this variable. For details on this and other security related settings, including
adding ssh keys to compute nodes, please see Securing the Cluster.

• Modifies /etc/yum.repos.d/clusterware.repo to change enabled=1 to enabled=0. Subsequent execu-
tions of scyld-install to update the ClusterWare platform will temporarily (and silently) re-enable the Clus-
terWare repo for the duration of that command. This is done to avoid inadvertent updates of ClusterWare packages
if and when the clusterware administrator executes a more general yum install or yum update intending to
add or update the base distribution packages.

Then scyld-install uses systemd to enable and start firewalld, and opens ports for communication between
head nodes as required by etcd. See Services, Ports, Protocols for details.

Once the ports are open, scyld-install initializes the ClusterWare database and enables and starts the following
services:

• httpd: The Apache HTTP daemon that runs the ClusterWare service and proxies Grafana.

• xinetd: Provides network access to tftp for PXE booting.

• telegraf : Collects head node performance data and transmits to telegraf-relay service.

3.3. Install ICE ClusterWare 29

ICE ClusterWare Documentation, Release 12.4.0

• telegraf-relay: Forwards telegraf data to InfluxDB and to telegraf-relay services running on head nodes

• influxdb: Stores node performance and status data for visualization in Grafana.

• grafana-server: Displays the head node and compute node status data through a web interface.

The script then:

• Opens ports in firewalld for public access to HTTP, HTTPS, TFTP, iSCSI, and incoming Telegraf UDP mes-
sages.

ò Note

UDP message sending is deprecated as of the ClusterWare 12.4.0 release.

• Installs and configures the cluster administrator's clusterware-tools package (unless it was executed with the
--no_tools option).

• Configures the cluster administrator's ~/.scyldcw/settings.ini to access the newly installed ClusterWare
service using the scyld-tool-config tool.

• Creates an initial simple boot image DefaultImage, boot config DefaultBoot, and attributes DefaultAttribs using
the scyld-add-boot-config tool.

• Loads the cluster configuration specified on the command line using the scyld-cluster-conf load com-
mand.

• Restarts the httpd service to apply the loaded cluster configuration.

s Important

See the Boot Configurations for details about how to modify existing boot images, create new boot images, and
associate specific boot images and attributes with specific compute nodes. We strongly recommend not modifying
or removing the initial DefaultImage, but rather cloning that basic image into a new image that gets modified further,
or just creating new images from scratch.

s Important

If you wish to ensure that the latest packages are installed in the image after the scyld-install, then execute
scyld-modimg -i DefaultImage --update --overwrite --upload.

s Important

See Common Additional Configuration for additional optional cluster configuration procedures, e.g., installing and
configuring a job scheduler, installing and configuring one of the MPI family software stacks.

s Important

If this initial scyld-install does not complete successfully, or if you want to begin the installation anew, then
when/if you re-run the script, you should cleanse the partial, potentially flawed installation by adding the --clear
argument, e.g., scyld-install --clear --config /tmp/cluster-conf. If that still isn't sufficient, then

30 Chapter 3. Install

ICE ClusterWare Documentation, Release 12.4.0

scyld-install --clear-all --config /tmp/cluster-conf does a more complete clearing, then reinstalls
all the ClusterWare packages.

Due to licensing restrictions, when running on a Red Hat RHEL system, the installer will still initially create a Rocky
compute node image as the DefaultImage. If after this initial installation a cluster administrator wishes to instead
create compute node images based on RHEL, then use the scyld-clusterctl repos tool as described in Creating
Arbitrary RHEL Images, and create a new image (e.g., DefaultRHELimage) to use as a new default.

3.4 scyld-install
NAME
scyld-install -- Tool to install the ClusterWare platform and perform initial basic configuration of a head node, and to
update an existing head node installation.

USAGE
scyld-install

[-h] [-v] [--config CONF_FILE] [--token TOKEN] [--dnf-repo REPO_FILE] [--yum-repo
REPO_FILE] [-u | --update] [-l | --load DATABASE_FILE] [-s | --save DATABASE_FILE]
[--without-files] [--iso PATH] [--os-iso PATH] [--clear] [--clear-all] [--no-tools]
[--join HEAD_IP] [--skip-version-check] [--database-passwd PASSWD] [--non-interactive]

OPTIONAL ARGUMENTS
-h, --help Print usage message and exit. Ignore trailing args, parse and ignore preceding

args.

--config CONF_FILE Specify a cluster configuration file to load and to initialize the DHCP server for
private cluster network.

--token TOKEN Specify a cluster serial number or other authentication to use in the yum repository
file.

--dnf-repo REPO_FILE Provide a complete dnf repository file.

--yum-repo REPO_FILE Provide a complete yum repository file for the ClusterWare platform. Alias
for --dnf-repo.

-u, --update If the ClusterWare platform is already installed, then by default scyld-install
asks for a confirmation that the intention is to update software, not to perform a
new install. This optional argument explicitly directs scyld-install to update
the ClusterWare installation.

DATABASE LOAD/SAVE OPTIONS
-l, --load DATABASE_FILE Load the ClusterWare database with the specified DATABASE_FILE.

-s, --save DATABASE_FILE Save the ClusterWare database to the specified DATABASE_FILE.

--without-files Do NOT include the contents of images and boot files when loading or saving.

ADVANCED OPTIONS
--iso PATH Install or update the ClusterWare platform using the named PATH, which is either

the path of a ClusterWare ISO file or the URL of a remote ClusterWare ISO file.

--os-iso PATH Create the DefaultImage and DefaultBoot using the named PATH, which is either
the path of a base distribution ISO file or the URL of a remote base distribution
ISO file.

3.4. scyld-install 31

ICE ClusterWare Documentation, Release 12.4.0

--clear THIS IS DEPRECATED - PLEASE USE --clear-all.

--clear-all Clear the ClusterWare database, which DELETES ALL IMAGES AND BOOT
CONFIGURATIONS! Remove all ClusterWare RPMs, except for clusterware-
installer) and libcouchbase. Delete directories /opt/couchbase/, /opt/
scyld/clusterware*/, and /var/log/clusterware/, and delete root's ~/
.scyldcw/ and current admin's ~/.scyldcw/ (but not any other admin's ~/.
scyldcw) for everything except logs, then optionally reinstall the ClusterWare
platform.

--no-tools Don't install the ClusterWare tools. The default is to install the tools.

--join EXISTING_HEAD_IP Join this head node to the EXISTING_HEAD_IP IP address of an exist-
ing head node.

--skip-version-check Use this installer and skip the online checking for a newer version.

--database-passwd PASSWD Specify the database administrative password. Warning: influxdb2 re-
quires a minimum of 8 characters.

--reconfigure During an update, most steps that alter the head node OS will be skipped by de-
fault, but this option overrides and updates the base distribution.

--non-interactive Execute the installer non-interactively, choosing default answers to the interactive
questions in a way that most users would do. This is appropriate for using the
installer in a script.

EXAMPLES
scyld-install --clear

Clear the database, leaving it empty, and undo any existing ClusterWare installation.

scyld-install --clear --config cluster-conf

Clear the database, leaving it empty, and undo any existing ClusterWare installation, then reset the database
to the specified cluster-conf parameters.

RETURN VALUES
Upon successful completion, scyld-install returns 0. On failure, an error message is printed to stderr and scyld-install
returns 1.

3.5 scyld-tool-config
NAME
scyld-tool-config -- "Command line tool" for the ClusterWare platform

USAGE
scyld-tool-config

[-h] [-v] [-q] [-c | --config CONFIG] [--base-url URL] [[-u | --user] USER[:PASSWD]]
[--yes] [--example]

DESCRIPTION
The generic command line tool for the ClusterWare platform.

OPTIONAL ARGUMENTS
-h, --help Print usage message and exit. Ignore trailing args, parse and ignore preceding

args.

32 Chapter 3. Install

ICE ClusterWare Documentation, Release 12.4.0

-v, --verbose Increase verbosity.

-q, --quiet Decrease verbosity.

-c, --config CONFIG Specify a client configuration file CONFIG.

--yes Answer yes or to defaults to all questions.

--example Generate an example file (implies --yes).

ARGUMENTS TO OVERRIDE BASIC CONFIGURATION DETAILS
--base-url URL Specify the base URL of the ClusterWare REST API.

-u, --user USER[:PASSWD]
Masquerade as user USER with optional colon-separated password PASSWD.

EXAMPLES
RETURN VALUES
Upon successful completion, scyld-tool-config returns 0. On failure, an error message is printed to stderr and scyld-
tool-config returns 1.

3.6 scyld-cluster-conf
NAME
scyld-cluster-conf -- load or save the cluster configuration file.

USAGE
scyld-cluster-conf

[-h] [-v] [-q] [[-c | --config] CONFIG] [--base-url URL] [[-u | --user] USER[:PASSWD]]
{load, save} ...

OPTIONAL ARGUMENTS
-h, --help Print usage message and exit. Ignore trailing args, parse and ignore preceding

args.

-v, --verbose Increase verbosity.

-q, --quiet Decrease verbosity.

-c, --config CONFIG Specify a client configuration file CONFIG.

ARGUMENTS TO OVERRIDE BASIC CONFIGURATION DETAILS
--base-url URL Specify the base URL of the ClusterWare REST API.

-u, --user USER[:PASSWD]
Masquerade as user USER with optional colon-separated password PASSWD.

ACTIONS
load CLUSTER_CONFIG

Load CLUSTER_CONFIG as the new configuration file, optionally loading only nodes.

--dry-run Parse the file, but do not alter the database.

--nets-only Ignore other settings and only load networks.

--nodes-only Ignore other settings and only load nodes.

3.6. scyld-cluster-conf 33

ICE ClusterWare Documentation, Release 12.4.0

save CLUSTER_CONFIG
Save the current configuration file to file CLUSTER_CONFIG.

CLUSTER CONFIGURATION FILES
The scyld-cluster-conf command is primarily used to load a cluster configuration into the ClusterWare platform, in-
cluding the PXE boot network definition(s) and the node definitions. A minimal useful configuration file consists of at
least an iprange and one or more nodes:

iprange 10.10.24.100
node 08:00:27:A2:3F:C9

The first IP address in the iprange will be used to identify a local interface on the head node in order to find networking
details such as the network mask. The DHCP range will be assumed to cover from the first IP up to the network
broadcast address, but a "last" address can also be provided to limit that range:

nodes 10
iprange 10.10.24.100/24 10.10.24.199
node 08:00:27:A2:3F:C9
node
node 08:00:27:A2:E4:A2

Note that the node count can be provided in the file and a warning will be printed if more than that many nodes are
defined in the file. The netmask can also be supplied as shown in the iprange line. Nodes will be numbered in order
starting with index 0 but a line with no MAC address will act as a placeholder meaning this file would define nodes n0
and n2.

s Important

If multiple MAC addresses are included for a single node, only the first will be used.

Alternatively network definitions can specify where the node numbering actually starts:

1 10.10.24.100/24 10.10.24.199
node 08:00:27:A2:3F:C9
node
node 08:00:27:A2:E4:A2

This configuration file still defines a DHCP range of 100 IP addresses, now the nodes will be numbered starting with
n1. In more complicated network configurations compute nodes may be split among multiple subnets:

1 10.10.24.100/24
node 08:00:27:A2:3F:C9
node
node 08:00:27:A2:E4:A2

21 10.10.25.100/24 10.10.25.199 via 10.10.24.4 gw 10.10.25.254
node 08:00:27:FE:A3:22

The first network definition will be limited to 20 IP addresses based on the first index of the second network definition.
For networks that are not locally accessible to the head node(s), such as 10.10.25.0/24 in this case, the configuration
file can also specify an optional route and compute node gateway. The route is specified through the via keyword
and is only used to identify the appropriate interface for the DHCP server to listen to at run time. The gateway (gw)
should be on the compute node network and will be provided to the booting nodes such that they can reach the head
node cluster. A DHCP relay should be configured to forward DHCP traffic from the remote compute nodes to the head

34 Chapter 3. Install

ICE ClusterWare Documentation, Release 12.4.0

nodes and vice versa, and should populate the giaddr field of the DHCP request with an address on the compute node
subnet. For directions on configuring DHCP relays, please see your switch or operating system documentation.

When defining multiple networks they must be defined in order of node indexing. Node indexes and IP addresses are
assigned based on the most recently defined network so the above example defines 3 nodes, n1, n3, and n20. Additional
nodes added dynamically will be assigned the lowest available index and the corresponding IP address.

s Important

Note that loading a cluster configuration will completely overwrite any existing configuration, including deleting
all previously defined nodes.

s Important

We suggest restarting the clusterware service on all head nodes after loading a new cluster configuration.

EXAMPLES
scyld-cluster-conf save /root/cluster-conf-bak

Save a copy of the current network configuration and node list.

scyld-cluster-conf load /root/cluster-conf-new

Replace the existing node definitions with ones loaded from the /root/cluster-conf-new file.

RETURN VALUES
Upon successful completion, scyld-cluster-conf returns 0. On failure, an error message is printed to stderr and
scyld-cluster-conf returns 1.

3.7 Securing the Cluster
This section discusses cluster security issues that are exclusive to the ICE ClusterWare™ platform. We assume that the
cluster administrator is familiar with security issues that are not solely related to ClusterWare clusters, such as securing
the cluster from outside access, optionally enabling various Red Hat RHEL/CentOS functionalities for logging and
auditing access to nodes and storage and for managing SELinux.

3.7.1 Authentication
The ICE ClusterWare™ cluster administrator authentication method is controlled in the /opt/scyld/clusterware/
conf/base.ini file by the plugins.auth variable and is initially set to "appauth". The scyld-install installation
adds the current user to the auth.tmpadmins variable in that same file (unless passed the --no-tools argument).
The comma-separated list of user names, corresponding to system accounts on the head node, are allowed in without
additional authentication checks. The auth.tmpadmins variable is only intended to be used during early installation,
for small experimental clusters, or when recovering from some sort of failure, and is commented out by the installer
during the installation process.

After installation, any administrator can add additional administrators through the scyld-adminctl command whose ar-
guments match the other scyld-*ctl commands as described in ICE ClusterWare Command Line Tools. See Config-
ure Additional Cluster Administrators for details. In the event of recovery, we suggest that administrators add accounts
for themselves through this tool, and thereafter comment out or clear the auth.tmpadmins variable.

The "appauth" plugin executes the command defined in the appauth.app_path variable as user root. The default imple-
mentation of that command is provided by /opt/scyld/clusterware/bin/pam_authenticator. This implemen-

3.7. Securing the Cluster 35

ICE ClusterWare Documentation, Release 12.4.0

tation interfaces with the PAM authentication system using the /etc/pam.d/cw_check_user configuration file. The
contents of this file initially use local system authentication, although this can be modified to authenticate against any
mechanism available through the PAM system. For details, see the PAM documentation provided by your distro, the
main PAM project, and the Red Hat https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/
system-level_authentication_guide/pluggable_authentication_modules documentation.

Administrators can provide authentication methods beyond PAM by implementing a script or application and providing
it via the appauth.app_path variable. Appropriate applications should start with no arguments, read a username and
password separated by a newline from stdin , and reply with either yes or no followed by a newline on stdout. For
example, a test run of pam_authenticator looks like:

[example@head ~] sudo /opt/scyld/clusterware/bin/pam_authenticator
tester
not_the_password
no

3.7.1.1 Assign Temporary Permissions

If an issue occurs and you need to grant temporary administrative permissions to a user or list of users:

1. SSH into a head node.

2. Modify the base.ini file:

auth.tmpadmins = <comma-separated list of usernames>

3. Restart the clusterware service for the change to take effect:

systemctl restart clusterware

The list of users should have FullAdmin privileges.

4. Fix the issue.

5. Modify the base.ini file to remove the list of users who should not have FullAdmin privileges.

6. Restart the clusterware service for the change to take effect.

3.7.2 Role-Based Access Controls

ò Note

The ICE ClusterWare™ system supports the Keycloak authentication system that may be helpful in linking to
existing enterprise identity management systems. For more info, see Integrating Keycloak with ICE ClusterWare
for RBAC

Prior to version 12.2.0, the ClusterWare platform only had the concept of an "admin" who could perform any action on
any of the ClusterWare database entries. The ClusterWare platform now has Role-Based Access Controls (RBAC) to
allow different "classes" of administrators, some of whom may have signicantly reduced sets of actions that they may
perform. There are 6 system-provided Roles plus a "No Access" pseudo-role, described below. A given admin user
can be assigned one or more Roles, with each Role granting a specific set of Permissions (roles are additive; if one role
grants a permission, then, in general, another role cannot remove it).

By default, the first admin user added to the system will be assigned to the "Full Admin" Role and thereby gain per-
mission to take any action within the system. When creating additional admin users, by default, they will inherit the
same roles as their creator. This means that a Full Admin will create other Full Admins - the same as the default on
prior versions of the ClusterWare platform.

36 Chapter 3. Install

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system-level_authentication_guide/pluggable_authentication_modules
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system-level_authentication_guide/pluggable_authentication_modules

ICE ClusterWare Documentation, Release 12.4.0

The current ClusterWare roles are:

• Authenticated User

– Any admin account will have this role which simply grants read-only access to the system. Auth-Users
can read nearly any object in the ClusterWare database, with the exception of reserved attributes. This role
may be useful for admins who need to report on cluster status and configuration, or perhaps for "power
users" who may have some knowledge of cluster operations but should not be able to modify or change the
configuration.

• Onsite Engineer

– The Onsite Engineer role is aimed at technical staff who may need to interact with the machines physically,
e.g. to power on/off the machines, or to rack/unrack the machines. In addition to the “read” permissions
from Auth-User, the Onsite Engineer is able to issue power-control commands through scyld-nodectl,
and to write/update node information.

• Imaging Engineer

– The Imaging Engineer is primarily responsible for the creation of new images or modification of existing
ones. To better assist them in that role, they are also given permissions to read reserved attributes (to see
what nodes are booting into what images).

• Production Engineer

– For most day-to-day operations, the Production Engineer role might be the most useful. It grants several
permissions: to update/modify nodes, including power-control functionality; to update regular and reserved
attributes; to create/modify images and boot configs; to create/modify naming pools; and to create/modify
git repositories.

• Manager

– In addition to the Auth-User (read-only) permissions, a Manager can create new admins in the system and
view reserved attributes. This role may be useful in larger organizations where the creation and removal of
admin accounts could be managed by less technical staff.

• Full Admin

– The Full Admin role grants all possible permissions to the admin so they can read/write any object, do full
power-control on nodes, update, or delete any object, etc.

– Permissions that are only granted to Full Admins: control over distros and repos; control over dynamic
groups and state sets; control over head nodes; control over hostnames and networks; and control over the
cluster configuration itself.

• No Access

– While not a "role" per se, the ClusterWare platform uses the No Access pseudo-role to enforce a block on
an account. If an admin has the No Access role, then they will not be able to perform any actions, regardless
of any other role they may have.

– It is certainly best practice to remove such blocked accounts from the ClusterWare platform entirely, and
to also remove them from any authentication system that feeds the software (such as Keycloak). However,
it is sometimes helpful to have "helper" accounts that can be enabled and disabled quickly. For example,
in larger sites, there may be contractors or vendor support staff that need access to a system to help with a
problem; but when the problem is resolved, those accounts can be deactivated with the "No Access" role
but left in-place in case another support event arises later.

To assign roles when a new account is created, use the scyld-adminctl tool with a comma-separated list of roles:

scyld-adminctl create name=charlie roles=ImagingEngineer,OnsiteEngineer

To assign roles after an account has been created, simply update the admin record with the new list of roles:

3.7. Securing the Cluster 37

ICE ClusterWare Documentation, Release 12.4.0

scyld-adminctl -isally update roles=Manager

ò Note

For organizations not wishing to utilize RBAC, simply assign every admin user to the "Full Admin" Role; this is
the default and will then mimic the behavior of previous ClusterWare versions.

For more information, including a full description of the Roles and Permissions, see Role-Based Access Control System.

3.7.3 Changing the Database Password
The scyld-install installation configures the ICE ClusterWare™ database with a randomly generated password.
This password is used when joining a new head node to the cluster and must be provided either through a command
line or on request during the installation of the new head node. This password is stored in the database.admin_pass
variable in the /opt/scyld/clusterware/conf/base.ini file. The details of changing this password depend on
the specific database the cluster is using.

s Important

Once this password is changed within the database, change the database.admin_pass variable in base.ini and
restart the clusterware service on each head node.

3.7.3.1 Changing the etcd Password

Use the etcdctl tool for the rare occasion that you need to change the etcd password.

1. Change the etcd password using the etcdctl wrapper:

sudo /opt/scyld/clusterware-etcd/bin/etcdctl user passwd root

The wrapper code provides the existing password from the base.ini file to the real etcdctl application. That
command then requests the new password and confirmation of the new password. Once this command completes,
the clusterware service on all head nodes will stop working and all scyld-*ctl commands will not work until
all steps are completed.

2. Update the database.admin_pass variable in /opt/scyld/clusterware/conf/base.ini file on each head
node.

3. Restart the clusterware service on all head nodes:

systemctl start clusterware

After restarting the clusterware service on each head node, all scyld-*ctl commands will work again.

. Warning

If this procedure is not followed, the cluster can become unusable and may require more extreme intervention to
recover the etcd database contents. Please contact Penguin Solutions if such recovery is necessary.

38 Chapter 3. Install

ICE ClusterWare Documentation, Release 12.4.0

3.7.4 Compute Node Remote Access
By default, remote access to compute nodes is provided through SSH using key-based authentication, although admin-
istrators may also enable password-based SSH in the compute node image by configuring a password for the root user.
Every head node generates a public/private key pair and places these files in directory /opt/scyld/clusterware/
.ssh/ using the names id_rsa.clusterware and id_rsa.clusterware.pub. These keys are used by the head
nodes to execute commands on the compute nodes. All head node public keys are downloaded by compute nodes at
boot time by the update_keys.sh script and appended to /root/.ssh/authorized_keys. This allows any head
node to execute a command on any compute node. The /opt/scyld/clusterware/.ssh/id_rsa.clusterware
key can be used by system administrators as an "automation" key for tasks like cron jobs. It is also useful in recovery
situations where an administrator may need to use this private key to directly access compute nodes

This same script that downloads the head node public keys also downloads the public keys attached to every cluster
administrator account. These accounts are created using the scyld-adminctl tool as follows:

scyld-adminctl create name=admin keys=@~/.ssh/id_rsa.pub

This allows anyone with the corresponding id_rsa to SSH into the root account on any compute node booted after the
key was added. The key can also be added as a string or updated for an existing administrator. For example:

scyld-adminctl -i admin update keys='ssh-rsa AAAAB3NzaC1yc2EAAAADA....'

Cluster administrators are also welcome to add SSH keys to compute node images in small private clusters. Although
adding administrator accounts with public keys simplifies management of larger clusters with multiple node images or
cluster administrators, administrator accounts stored in the database or listed in the base.ini use the same authenti-
cation mechanisms described in the previous section.

3.7.5 Compute Node Host Keys
In most computer systems the SSH sshd daemon uses unique host keys to identify itself to clients, and host keys are
not created during image creation. This means that each compute node will generate its own host keys during boot.
Since the compute node changes are discarded on reboot, a new set of keys will be generated with each boot.

In an appropriately protected cluster, some administrators prefer for all compute nodes to share host keys. This can be
achieved by storing host keys in the compute node image. For example, to generate host keys and repack the Default-
Image, an administrator can run:

scyld-modimg -i DefaultImage --exec sshd-keygen --overwrite --upload

All nodes that boot using this image after this change will use identical host keys, so ideally you should reboot the
nodes with each node's updated image. To remove the host keys from an image, an administrator needs to delete the
/etc/ssh/ssh_host_* files from the compute node image.

3.7.6 Encrypting Communications
The ICE ClusterWare™ platform provides an internal cluster certificate authority that can provide signed certificates
to secure communications between head nodes as well as between head nodes and compute nodes. If you prefer to
provide your own certificates or certificate authority, Apache can be configured to use those certificates and compute
nodes can verify those signatures during communications. Apache configuration files are located in /opt/scyld/
clusterware/conf/httpd/. The Apache VirtualHost definition can be found in vhost.conf. The proxy definition
in that file needs to be included into the HTTPS VirtualHost. For details about how to properly enable HTTPS on the
Apache server, see the documentation provided by your distro.

Once HTTPS is enabled, the ~/.scyldcw/settings.ini file of any existing ClusterWare tool installation should be
updated. In ~/.scyldcw/settings.ini, update the protocol of the client.base_url variable to use https. It should
be safe to leave HTTP enabled for localhost-only access and, in that case, local tool installations can continue to use
the original localhost-based URL.

3.7. Securing the Cluster 39

ICE ClusterWare Documentation, Release 12.4.0

The internal cluster certificate authority is implemented using a certificate stored in the backend database, accessible
to all head nodes, and can be used to sign certificates used by assorted services on the head node by executing:

/opt/scyld/clusterware/bin/generate_head_certs

The scyld-install script runs this command during installation or updates to generate separate certificates for sup-
ported services on the head node. The keys and certificates are stored in /opt/scyld/clusterware/ca_certs/
along with the CA public key.

Communication between devices in your cluster happens with different levels of encryption and authentication. The
following diagram illustrates the use of TLS in communications involving head and compute nodes with all possible
configurations:

1. TLS off - not encrypted

• Between compute nodes: Communication between compute nodes while chain booting is not encrypted;
however, the compute nodes do confirm the size and checksum of the received files based on information
from the head node.

• Between etcd on head nodes: Communication between etcd on one head node and etcd on another head
node is not encrypted or authenticated. All communication between etcd should occur on a secure network.

2. TLS on - encrypted, but not authenticated by default

• Configure Encrypted Communication between Head and PXE Compute Nodes

• Configure Encrypted Communication between Head and Diskful Compute Nodes

• Configure Client Authentication between Head and Compute Nodes

3. TLS on - encrypted and authenticated

Between head nodes: All backend communication between head nodes is encrypted and authenticated.

3.7.6.1 Configure Encrypted Communication between Head and PXE Compute Nodes

By default, communication between ClusterWare head and PXE compute nodes is encrypted using SSL/TLS. Leaving
this on is highly recommended for security. If necessary, you can turn off SSL/TLS by setting head.prefer_ssl =
False in the /opt/scyld/clusterware/conf/base.ini file on the head node(s). When this is enabled, compute
nodes send node status information back to the ClusterWare platform over HTTPS, but do not authenticate the head
node.

40 Chapter 3. Install

ICE ClusterWare Documentation, Release 12.4.0

3.7.6.2 Configure Encrypted Communication between Head and Diskful Compute Nodes

To enable TLS encryption for diskful compute nodes, modify the base_url in /etc/clusterware/node.sh to use
HTTPS. The sslverify option in the same file defaults to "no", but if the cluster CA certificate is installed on the
diskful node, setting sslverify=yes in node.sh enables host authentication.

See Installing the clusterware-node Package for details about the node.sh file.

3.7.6.3 Configure Client Authentication between Head and Compute Nodes

To enable encryption with client authentication, enable one-time Certificate Signing Requests (CSR) for specific nodes
using the following command:

scyld-clusterctl certs enable -i <nodes>

where <nodes> is a comma-separated list of node IDs.

Reboot all specified nodes after running the command.

This functionality requires a TPM on each compute node because the compute nodes create a private key in their TPM
on boot and use it to sign a CSR. The CSR is sent to the head node. If CSR signing is enabled for a specific node, the
head node responds with a signed client certificate. The node stores the signed client certificate in non-volatile TPM
storage.

If the client finds a client certificate in its TPM on the same or subsequent boots, it uses that certificate and the private
key in the TPM to authenticate itself to the server. Successful authentication to the server results in an encrypted TLS
connection with client authentication.

Note that future releases will allow encryption with host authentication by automating the process of adding the cluster
CA certificate to compute nodes booting via UEFI.

3.7.7 Security-Enhanced Linux (SELinux)
Security-Enhanced Linux (SELinux) is a set of patches to the Linux kernel and various utilities that provide mandatory
access control to major subsystems of a node. See https://en.wikipedia.org/wiki/Security-Enhanced_Linux for general
discussion of SELinux.

The ICE ClusterWare™ platform supports SELinux on the head nodes and compute nodes.

3.7.7.1 SELinux On Compute Nodes

For Red Hat RHEL and CentOS compute nodes, the root file systems created by the scyld-modimg tool include
SELinux support as part of the installation of the @core yum group. During the boot process the mount_rootfs script
will, like the standard dracut based initramfs, load the SELinux policy before switching root. Note that the default
cmdline in the boot configurations created through scyld-add-boot-config (including the DefaultBoot configu-
ration) will contain enforcing=0, thereby placing all compute nodes in SELinux "permissive" mode. Only remove
this option once you have completed testing to confirm that your applications will run as expected with SELinux in
"enforcing" mode.

SELinux on compute nodes may be disabled in the standard ways through command line arguments or by changing the
contents of the node's /etc/selinux/config configuration file. For details please refer to appropriate distro-provided
documentation.

In addition to the default "targeted" SELinux policy provided by RHEL and CentOS, the ClusterWare platform also
supports the Multi-Level Security (MLS) policy for compute nodes. Enabling the MLS policy inside an image is done
the same way as it would be done on a locally installed system. After entering the image chroot using scyld-modimg,
first install the selinux-policy-mls package, and then modify the /etc/selinux/config file to reference the
newly installed policy. Because the clusterware-node SELinux policy module is installed at image creation time, it
may need to be re-installed after switching to the MLS policy:

3.7. Securing the Cluster 41

https://en.wikipedia.org/wiki/Security-Enhanced_Linux

ICE ClusterWare Documentation, Release 12.4.0

semodule --install /opt/scyld/clusterware-node/clusterware-node.pp.bz2

The semodule command can also be used to check if the policy is loaded:

semodule --list | grep clusterware

When exiting the chroot, the ClusterWare platform automatically relabels the file system based on the policy referenced
in /etc/selinux/config.

s Important

Fully configuring a cluster for MLS requires significant effort, including labeling objects on shared storage and
defining additional policy around user workflows and tools. Please refer to your operating system documentation,
as such details are beyond the scope of this document. Note that ClusterWare-provided schedulers, MPI implemen-
tations, and 3rd party applications may need additional custom permissions not covered here in order to configure
a functional MLS cluster.

When creating boot configuration for an MLS enabled image, please be aware that the MLS policy, by default, does not
allow the root user to log into the compute node via ssh. Because ssh is used by the ClusterWare soft power commands,
please either enable the root login functionality or use the _remote_user node attribute to configure login as a user with
sudo shutdown permission. The root login permission can be enabled through the setsebool command, and the
boolean is named ssh_sysadm_login.

3.7.7.2 SELinux On Head Nodes

On head nodes, SELinux is detected to be in "enforcing" mode at both installation and service run time. To switch
SELinux from "enforcing" to "permissive" mode, please see the documentation for your operating system. If this
switch is made while the clusterware service is running, please restart that service:

sudo systemctl restart clusterware

3.7.7.3 MLS Policy On Head Nodes

For head nodes enforcing the MLS policy, the SELinux user sysadm_u should be used to install the ClusterWare plat-
form and run administrative tools.

To map a Linux user to the sysadm_u SELinux user, you can run:

sudo semanage login --add linux_user --seuser sysadm_u

By default, the sysadm_u user should run with the sysadm_t domain.

3.7.8 Security Technical Implementation Guides (STIG)
STIG security hardening implements compliance with the Defense Information Systems Agency (DISA) guidelines
described in the Security Technical Implementation Guides (STIGs) (https://csrc.nist.gov/glossary/term/security_
technical_implementation_guide). Certain high-security clusters may require STIG compliance.

The ICE ClusterWare™ platform provides basic STIG support for kickstarted nodes by adding the following snippet
to your kickstart *.ks file:

%addon org_fedora_oscap
content-type = scap-security-guide

(continues on next page)

42 Chapter 3. Install

https://csrc.nist.gov/glossary/term/security_technical_implementation_guide
https://csrc.nist.gov/glossary/term/security_technical_implementation_guide

ICE ClusterWare Documentation, Release 12.4.0

(continued from previous page)

profile = xccdf_org.ssgproject.content_profile_stig
%end

To configure a STIG head node, add the snippet to your kickstart config file and reboot the node using that *.ks file to
enable STIG. Then Install ICE ClusterWare on the STIG-enabled node in the usual way.

The ClusterWare software provides an example file /opt/scyld/clusterware/kickstarts/basic-stig.kswith
that snippet appended for administrators who would like to kickstart infrastructure nodes or additional head nodes with
that STIG applied at install time.

3.8 Services, Ports, Protocols

3.8.1 Apache
Apache serves the ICE ClusterWare™ REST API via HTTP on port 80 using mod_wsgi through the httpd systemd
service aliased as clusterware. HTTPS Encryption over port 443 can be enabled through standard Apache and operating
system procedures. Apache is Open Source, and Penguin Computing contributes the REST API. The log files are /
var/log/clusterware/api_access_log and /var/log/clusterware/api_error_log.

The ClusterWare GUI is also served through Apache from the /var/www/clusterware/front/ directory.

3.8.2 Chrony
Chrony is used to keep time synchronized across the cluster, including synchronization to upstream network time-
servers and to all nodes within the cluster itself. The systemd service name is chronyd and it uses port 123 for its time-
keeping communications, and port 323 for receiving commands from the chronyc management tool. This service is
configured, started, and stopped by the ClusterWare service based on the cluster configuration. The configuration file
is generated from a template located at /opt/scyld/clusterware-chrony/chrony.conf.template.

3.8.3 DHCP
DHCP provides dynamic host configuration, with a systemd service name clusterware-dhcpd and using port 68. The log
file is var/log/clusterware/isc-dhcpd.log. This service is configured, started, and stopped by the ClusterWare
service based on the cluster configuration. The configuration file is generated from a template located at /opt/scyld/
clusterware-iscdhcp/dhcpd.conf.template.

s Important

Never directly try to control DHCP on a ClusterWare head node, it will not work. Services that start with
clusterware- are managed by the ClusterWare service.

3.8.4 DNS
DNS provides name- and ip-address-lookup services, with a systemd service name clusterware-dnsmasq and using port
53. This service is configured, started, and stopped by the ClusterWare service based on the cluster configuration. The
configuration file is generated from a template located at /opt/scyld/clusterware-dnsmasq/dnsmasq.conf.
template.

s Important

Never directly try to control DNS on a ClusterWare head node, it will not work. Services that start with
clusterware- are managed by the ClusterWare service.

3.8. Services, Ports, Protocols 43

ICE ClusterWare Documentation, Release 12.4.0

3.8.5 etcd
The replicated configuration key/value store etcd has the systemd service name clusterware-etcd. Log files are found
in /var/log/clusterware/. etcd uses port 52380 to communicate with other head nodes.

s Important

Never directly try to control etcd on a ClusterWare head node, it will not work. Services that start with
clusterware- are managed by the ClusterWare service.

3.8.6 iSCSI
iSCSI optionally serves root filesystems to compute nodes and uses port 3260. Serving root file systems via iSCSI is
configured by the ClusterWare service using the targetcli command line tool.

3.8.7 OpenSSH
OpenSSH provides services to remotely execute programs and to transfer files, with a systemd service name sshd and
using port 22. Encryption is SSH. The log file is /var/log/messages.

3.8.8 Telegraf / Telegraf-Relay / InfluxDB
All head node and compute node performance data collected by telegraf is sent to a systemd service named telegraf-
relay on one of the head nodes over HTTP(S). Telegraf-Relay replicates and relays this data to every other telegraf-relay
over HTTPS. Each telegraf-relay finally sends the data to its locally hosted InfluxDB for storage.

3.8.9 TFTP
The TFTP Server provides downloads for early iPXE boot files, with a systemd service name xinetd and using port 69.
This service can be replaced by appropriate network card firmware. The log file is /var/log/messages.

3.9 Common Additional Configuration
Following a successful initial install or update of ICE ClusterWare™, or as local requirements of your cluster dictate,
you may need to make one or more configuration changes.

3.9.1 Configure Hostname
Verify that the head node hostname has been set as desired for permanent, unique identification across the network.
In particular, ensure that the hostname is not localhost or localhost.localdomain.

3.9.2 Managing Databases
The ClusterWare platform currently only supports the etcd database.

On head nodes with multiple IP addresses the current ClusterWare etcd implementation has no way to identify the
correct network for communicating with other head nodes. By default the system will attempt to use the first non-
local IP. Although this is adequate for single head clusters and simple multihead configurations, a cluster administrator
setting up a multihead cluster should specify the correct IP. This is done by setting the etcd.peer_url option in
the /opt/scyld/clusterware/conf/base.ini file. A correct peer URL on a head node with the IP address of
10.24.1.1, where the 10.24.1.0/24 network should be used for inter-head communications might look like:

etcd.peer_url = http://10.24.1.1:52380

44 Chapter 3. Install

ICE ClusterWare Documentation, Release 12.4.0

If this value needs to be set or changed on an existing cluster, it should be updated on a single head node, then managedb
recover run on that head node, and then other heads (re-)joined to the now correctly configured one. The etcd.
peer_url setting should only be necessary on the first head as the proper network will be communicated to new heads
during the join process.

The ClusterWare etcd implementation does not allow the second-to-last head node in a multihead cluster to leave or be
ejected. See Removing a Joined Head Node for details, and Managing Multiple Head Nodes for broader information
about multiple headnode management.

s Important

Prior to any manipulation of the distributed database, whether through managedb recover, joining head nodes to
a cluster, removing head nodes from a cluster, or switching from Couchbase to etcd, the administrator is strongly
encouraged to make a backup of the ClusterWare database using the managedb tool. See managedb.

The etcdctl command provides scriptable direct document querying and manipulation. The ClusterWare platform
provides a wrapped version of etcdctl located in the /opt/scyld/clusterware-etcd/bin/ directory. The wrap-
per should be run as root and automatically applies the correct credentials and connects to the local etcd endpoint. Note
that direct manipulation of database JSON documents should only be done when directed by Penguin support.

3.9.3 Configure Administrator Authentication
ClusterWare administrator authentication is designed to easily integrate with already deployed authentication systems
via PAM. By default cluster administrators are authenticated through the pam_authenticator tool that in turn uses
the PAM configuration found in /etc/pam.d/cw_check_user. In this configuration, administrators can authen-
ticate using their operating system password as long as they have been added to the ClusterWare system using the
scyld-adminctl command. For example, to add username "admin1":

scyld-adminctl create name=admin1

If a ClusterWare administrator is running commands from a system account on the head node by the same name (i.e.
ClusterWare administrator fred is also head node user fred), the system will confirm their identity via a Unix socket
based protocol. Enabled by default, this mechanism allows the scyld tools to connect to a local socket to securely set
a dynamically generated one-time password that is then accepted during their next authentication attempt. This takes
place transparently, allowing the administrator to run commands without providing their password. The client code also
caches an authentication cookie in the user's .scyldcw/auth_tkt.cookie for subsequent authentication requests.

Managing cluster user accounts is generally outside the scope of the ClusterWare platform and should be handled by
configuring the compute node images appropriately for your environment. In large organizations this usually means
connecting to Active Directory, LDAP, or any other mechanism supported by your chosen compute node operating sys-
tem. In simpler environments where no external source of user identification is available or it is not accessible, the Clus-
terWare platform provides a sync-uids tool. This program can be found in the /opt/scyld/clusterware-tools/
bin directory and can be used to push local user accounts and groups either to compute nodes or into a specified image.
For example:

push uids and their primary uid-specific groups:
sync-uids --users admin1,tester --image SlurmImage

push uid with an additional group:
sync-uids --users admin1 --groups admins --image SlurmImage

The above pushes the users and groups into the compute node image for persistence across reboots. Then either reboot
the node(s) to see these changes, or push the IDs into running nodes with:

3.9. Common Additional Configuration 45

ICE ClusterWare Documentation, Release 12.4.0

sync-uids --users admin1,tester --nodes n[1-10]

The tool generates a shell script that is then executed on the compute nodes or within the image chroot to replicate the
user and group identifiers on the target system. This tool can also be used to push ssh keys into the authorized_keys files
for a user onto booted compute nodes or into a specified image. Please see the tool's --help output for more details
and additional functionality, such as removing users or groups, and controlling whether home directories are created
for injected user accounts.

3.9.4 Disable/Enable Chain Booting
The default ClusterWare behavior is to perform chain booting for more efficient concurrency for servicing a flood of
PXEbooting nodes that are requesting their large rootfs file. Without chain booting, the head node(s) serve the rootfs
file for all PXEbooting nodes and thus become a likely bottleneck when hundreds of nodes are concurrently requesting
their file. With chain booting, the head node(s) serve the rootfs files to the first compute node requesters, then those
provisioned compute nodes offer to serve as a temporary rootfs file server for other requesters.

In the event that the cluster administrator wishes to disable chain booting, then the cluster administrator executing as
user root should edit the file /opt/scyld/clusterware/conf/base.ini to add the line:

chaining.enable = False

To reenable chain booting, either change that False to True, or simply comment-out that chaining.enable line to
revert back to the default enabled state.

3.9.5 scyld-nss Name Service Switch (NSS) Tool
The scyld-nss package provides a Name Service Switch (NSS) tool that translates a hostname to its IP address or an IP
address to its hostname(s), as specified in the /etc/scyld-nss-cluster.conf configuration file. These hostnames
and their IP addresses (e.g., for compute nodes and switches) are those managed by the ClusterWare database, which
automatically provides that configuration file at startup and thereafter if and when the cluster configuration changes.

ò Note

scyld-nss is currently only supported on head nodes.

Installing scyld-nss inserts the scyld function in the /etc/nsswitch.conf hosts line, and installs the ClusterWare
/lib64/libnss_scyld* libraries to functionally integrate with the other NSS /lib64/libnss_* libraries.

Benefits include an expanded functionality of ClusterWare hostname resolution and increased performance of NSS
queries for those hostnames. Install the nscd package for additional performance improvement of hostname queries,
especially on clusters with very high node counts.

The scyld-nss package includes a scyld-nssctl tool allowing a cluster administrator to manually stop or start the
service by removing or reinserting the scyld function in /etc/nsswitch.conf. Any user can employ scyld-nssctl
to query the current status of the service. See scyld-nssctl for details.

3.9.6 Firewall Configuration
If you are not using the torque-scyld or slurm-scyld packages, either of which will transparently configure the firewall
on the private cluster interface between the head node(s), job scheduler servers, and compute nodes, then you need to
configure the firewall manually for both the head node(s) and all compute nodes.

46 Chapter 3. Install

ICE ClusterWare Documentation, Release 12.4.0

3.9.7 Configure IP Forwarding
By default, the head node does not allow IP forwarding from compute nodes on the private cluster network to external
IP addresses on the public network. If IP forwarding is desired, then it must be enabled and allowed through each head
node's firewalld configuration.

On a head node, to forward internal compute node traffic through the <PUBLIC_IF> interface to the outside world,
execute:

firewall-cmd --zone=external --change-interface=<PUBLIC_IF>
confirm it was working at this point then make it permanent
firewall-cmd --permanent --zone=external --change-interface=<PUBLIC_IF>

Appropriate routing for compute nodes can be modified in the compute node image(s) (see scyld-modimg tool). Lim-
ited changes may also require modifying the DHCP configuration template /opt/scyld/clusterware-iscdhcp/
dhcpd.conf.template.

3.9.8 Status and Health Monitoring
The ClusterWare platform provides a set of status and monitoring tools out-of-the-box, but admins can also use the
plugin system to add or modify the list of status, hardware, health-check, and monitoring (Telegraf) plugins. Some of
these plugins will be built into the disk image and cannot be removed without modifying that image manually; others
may be added or removed on-the-fly through several node attributes:

[admin1@head]$ scyld-nodectl ls -L
Nodes
n0
attributes
_boot_config: DefaultBoot
_status_plugins=chrony,ipmi
_hardware_plugins=infiniband,nvidia
_health_plugins=rasmem,timesync
_telegraf_plugins=lm-sensors,nvidia-smi

domain: cluster.local
. . .

The scyld-nodectl tool can be used to apply these attributes to individual or groups of nodes, or admins can create
attribute-groups with scyld-attribctl and then join nodes to those groups.

See ICE ClusterWare Plugin System for more details on the ClusterWare Plugin System.

3.9.9 Install Name Service Cache Daemon (nscd)
The Name Service Cache Daemon (nscd) provides a cache for most common name service requests. The performance
impact for very large clusters is significant.

3.9.10 Install jq Tool
The jq tool (/usr/bin/jq) is installable from the standard Linux distribution repositories and provides a command-
line parser for JSON output.

For example, for the --long status of node n0:

[sysadmin@head1 /]$ scyld-nodectl -i n0 ls --long
Nodes
n0

(continues on next page)

3.9. Common Additional Configuration 47

ICE ClusterWare Documentation, Release 12.4.0

(continued from previous page)

attributes
_boot_config: DefaultBoot
_no_boot: 0
last_modified: 2019-06-05 23:44:48 UTC (8 days, 17:09:55 ago)

groups: []
hardware
cpu_arch: x86_64
cpu_count: 2
cpu_model: Intel Core Processor (Broadwell)
last_modified: 2019-06-06 17:15:59 UTC (7 days, 23:38:45 ago)
mac: 52:54:00:a6:f3:3c
ram_total: 8174152

index: 0
ip: 10.54.60.0
last_modified: 2019-06-14 16:54:39 UTC (0:00:04 ago)
mac: 52:54:00:a6:f3:3c
name: n0
power_uri: none
type: compute
uid: f7c2129860ec40c7a397d78bba51179a

You can use jq to parse the JSON output to extract specific fields:

[sysadmin@head1 /]$ scyld-nodectl --json -i n0 ls -l | jq '.n0.mac'
"52:54:00:a6:f3:3c"

[sysadmin@head1 /]$ scyld-nodectl --json -i n0 ls -l | jq '.n0.attributes'
{
"_boot_config": "DefaultBoot",
"_no_boot": "0",
"last_modified": 1559778288.879129

}

[sysadmin@head1 /]$ scyld-nodectl --json -i n0 ls -l | jq '.n0.attributes._boot_config'
"DefaultBoot"

All of the scyld-* tools can produce JSON data, so similar techniques can be applied to images, boot configuration,
and so on. For example, use the the following to see the sizes of different images:

[sysadmin@head1 /]$ scyld-imgctl --json ls -L | jq '.[].content.cwsquash.size'
1277071360
1467298823

[sysadmin@head1 /]$ scyld-imgctl --json ls -L | jq '.[] | "\(.name) \(.content.cwsquash.
→˓size)"'
"DefaultImage 1277071360"
"NewImage 1277071360"

In this example, jq takes all of the top-level items (.[]) and then creates a text string for each item (the double quotes),
using the .name and .content.cwsquash.size fields separated by a space. The \(..) notation selects the fields.

Further information, including tutorials and user manuals, can be found at https://jqlang.github.io/jq/.

48 Chapter 3. Install

https://jqlang.github.io/jq/

ICE ClusterWare Documentation, Release 12.4.0

3.10 Additional Software
scyld-install installs and updates the basic ICE ClusterWare™ software. Additional software packages are avail-
able in the ClusterWare repository.

scyld-install manipulates the /etc/yum.repos.d/clusterware.repo file to automatically enable the scyld re-
pos when the tool executes and disable the repos when finished. This is done to avoid inadvertent updating of Cluster-
Ware packages when executing a simple yum update.

ò Note

If the cluster administrator has created multiple /etc/yum.repos.d/*.repo files that specify repos containing
ClusterWare RPMs, then this protection against inadvertent updating is performed only for /etc/yum.repos.d/
clusterware.repo, not for those additional repo files.

Accordingly, the --enablerepo=scyld* argument is required when using yum for listing, installing, and updating
these optional ClusterWare packages on a head node. For example, these optional installable software packages can be
viewed using yum list --enablerepo=scyld* | grep scyld. After installation, any available updates can be
viewed using yum check-update --enablerepo=scyld* | grep scyld.

Specific install and configuration instructions for various of these packages, e.g., job managers and OpenMPI middle-
ware, are detailed in this chapter.

3.10.1 Adding 3rd-party Software
An existing compute node image may need to contain additional software (e.g., a driver and perhaps the driver's asso-
ciated software) that has been downloaded from a 3rd-party vendor in the form of an RPM or a tarball.

Suppose a tarball named driver-tarball.tgz has been downloaded into the head node /tmp/ directory, and you
need to install its contents into an image. A cautious first step is to clone an existing image and add the new software
to that clone, which leaves the existing image unmodified. For example, clone a new image:

scyld-imgctl -i DefaultImage clone name=UpdatedImage

Now enter the new UpdatedImage in a chroot environment:

scyld-modimg -i UpdatedImage --chroot

Suppose your administrator user name is admin1. Inside the chroot you are always user root. Copy the downloaded
tarball from the head node into your chroot with a simple command from inside the chroot:

scp -r admin1@localhost:/tmp/driver-tarball.tgz /tmp

Unpack /tmp/driver-tarball.tgz and examine the contents, where you will likely find a script that manages the
tarball-specific software installation.

s Important

Carefully read the instructions provided by the 3rd-party software vendor before executing the script, and carefully
read the output produced when executing the script.

There are several factors to keep in mind when executing the 3rd-party install script:

• A 3rd-party installation that involves a new kernel module requires linking that module to the kernel in the
chroot. This requires the presence of the kernel-devel package that matches that kernel. If that RPM is not

3.10. Additional Software 49

ICE ClusterWare Documentation, Release 12.4.0

currently installed in the chroot, then inside the chroot manually yum install it, naming the specific kernel
version, e.g.,:

yum install kernel-devel-3.10.0-957.27.2.el7.x86_64

to match kernel-3.10.0-957.27.2.el7.x86_64.

• Some 3rd-party install scripts use the uname command to determine the kernel against which to link a new kernel
module. However, when the uname command executes inside a chroot, it actually reports the kernel version of
the host system that executes the scyld-modimg --chroot command, not the kernel that has been installed
inside the chroot. This uname behavior only works properly for module linking purposes if the chroot contains
only one kernel and if that kernel matches the kernel on the scyld-modimg --chroot-executing server. To
specify an alternate kernel, either name that kernel as an optional argument of a --chroot argument, e.g.,:

scyld-modimg -i NewImage --chroot 3.10.0-1160.45.1.el7.x86_64

or as a KVER variable value using the --exec argument, e.g., for a script inside the image that initializes a
software driver module and links that module to a specific kernel:

scyld-modimg -i NewImage --execute 'KVER=3.10.0-1160.45.1.el7.x86_64 /path/to/script
→˓'

Otherwise, hopefully the 3rd-party install script supports an optional argument that specifies the intended kernel
version, such as:

/path/to/install-script -k 3.10.0-1160.45.1.el7.x86_64

• If the 3rd-party install script encounters a missing dependency RPM, then the script reports the missing package
name(s) and fails. You must manually yum install those missing RPM(s) within the chroot and reexecute the
script.

• Some 3rd-party install scripts replace RPMs that were installed from the base distribution, e.g., Infiniband,
OFED. If any currently installed ICE ClusterWare™ packages declare these base distribution packages as de-
pendencies, then the install script's attempt to replace those packages fails. You must then uninstall the specified
ClusterWare package(s) (e.g., openmpi3.1, openmpi3.1-intel), then retry executing the install script. In some
cases the 3rd-party tarball contains packages that replace the ClusterWare package(s). In other cases you can
reinstall these ClusterWare package(s) after the 3rd-party install script successfully completes.

Finally, exit the chroot and specify to Keep changes, Replace local image, Upload image, and Replace remote image.

3.10.2 Job Schedulers
The default ICE ClusterWare™ installation for RHEL/Rocky 8 includes support for the optional packages Slurm and
OpenPBS. These optional packages can coexist on a scheduler server, which may or may not be a ClusterWare head
node. However, if job schedulers are installed on the same server, then only one at a time should be enabled and
executing on that given server.

All nodes in the job scheduler cluster must be able to resolve hostnames of all other nodes as well as the scheduler
server hostname. The ClusterWare platform provides a DNS server in the clusterware-dnsmasq package, as discussed
in Node Name Resolution. This dnsmasq will resolve all compute node hostnames, and the job scheduler's hostname
should be added to /etc/hosts on the head node(s) in order to be resolved by dnsmasq. Whenever /etc/hosts is
edited, please restart the clusterware-dnsmasq service with:

sudo systemctl restart clusterware-dnsmasq

50 Chapter 3. Install

ICE ClusterWare Documentation, Release 12.4.0

Installing and configuring a job scheduler requires making changes to the compute node software. When using image-
based compute nodes, we suggest first cloning the DefaultImage or creating a new image, leaving untouched the De-
faultImage as a basic known-functional pristine image.

For example, to set up nodes n0 through n3, you might first do:

scyld-imgctl -i DefaultImage clone name=jobschedImage
scyld-bootctl -i DefaultBoot clone name=jobschedBoot image=jobschedImage
scyld-nodectl -i n[0-3] set _boot_config=jobschedBoot

When these nodes reboot after all the setup steps are complete, they will use the jobschedBoot and jobschedImage.

See https://slurm.schedmd.com/rosetta.pdf for a discussion of the differences between PBS TORQUE and Slurm. See
https://slurm.schedmd.com/faq.html#torque for useful information about how to transition from OpenPBS or PBS
TORQUE to Slurm.

The following sections describe the installation and configuration of each job scheduler type.

3.10.2.1 Slurm

See Job Schedulers for general job scheduler information and configuration guidelines. See https://slurm.schedmd.com
for Slurm documentation.

ò Note

As of Clusterware 12, the default slurm-scyld configuration is Configless. This reduces the admin effort needed
when updating the list of compute nodes. See https://slurm.schedmd.com/configless_slurm.html for more infor-
mation.

Install Slurm

First, install Slurm software on the job scheduler server.

• For RHEL/Rocky 8:

sudo yum install slurm-scyld --enablerepo=scyld* --enablerepo=powertools

• For RHEL/Rocky 9:

sudo yum install slurm-scyld --enablerepo=scyld* --enablerepo=crb

• For all other systems:

sudo yum install slurm-scyld --enablerepo=scyld*

ò Note

An additional RPM package, slurm-scyld-slurmrestd, is available. See https://slurm.schedmd.com/slurmrestd.html
for details. The slurm-scyld-slurmrestd package is not installed by default. To install the package, run yum
--enablerepo=scyld* install slurm-scyld-slurmrestd.

Next, use a helper script slurm-scyld.setup to complete the initialization and setup the job scheduler and the com-
pute node image(s).

3.10. Additional Software 51

https://slurm.schedmd.com/rosetta.pdf
https://slurm.schedmd.com/faq.html#torque
https://slurm.schedmd.com
https://slurm.schedmd.com/configless_slurm.html
https://slurm.schedmd.com/slurmrestd.html

ICE ClusterWare Documentation, Release 12.4.0

slurm-scyld.setup init

The slurm-scyld.setup script performs the init, reconfigure, and update-nodes actions (described below)
by default against all up nodes. Those actions optionally accept a node-specific argument using the syntax [--ids|-i
<NODES>] or a group-specific argument using [--ids|-i %<GROUP>]. See Attribute Groups and Dynamic Groups
for details.

init first generates /etc/slurm/slurm.conf by trying to install slurm-scyld-node and run slurmd -C on 'up' nodes. By
default configless slurm is enabled by "SlurmctldParameters=enable_configless" in /etc/slurm/slurm.conf, and a DNS
SRV record called slurmctld_primary is created. To see the details about the SRV, run: scyld-clusterctl hosts
-i slurmctld_primary ls -l.

ò Note

For clusters with a backup Slurm controller, create a slurmctld_backup DNS SRV record:

scyld-clusterctl --hidden hosts create name=slurmctd_backup port=6817 \
service=slurmctld domain=cluster.local target=backuphostname \
type=srvrec priority=20

However if there are no 'up' nodes or slurm-scyld-node installation fails for some reason, then no node is configured
in slurm.conf during init. Later you can use reconfigure to create a new slurm.conf or update-node to update
the nodes in an existing slurm.conf. init also generates /etc/slurm/cgroup.conf and /etc/slurm/slurmdbd.conf, starts
munge, slurmctld, mariadb, slurmdbd, and restarts slurmctld. At last, init tries to start slurmd on nodes. In an ideal
case if the script succeeds to install slurm-scyld-node on compute nodes, srun -N 1 hostname works after init.

The slurmd installation and configuration on 'up' nodes do not survive after nodes reboot, unless on diskful compute
nodes. To make a persistent slurm image:

slurm-scyld.setup update-image slurmImage

By default update-image does not include slurm config files into slurmImage if configless is enabled, otherwise
includes config files into slurmImage. You can overwrite this default behavior by appending an additional arg "--copy-
configs" or "--remove-configs" after slurmImage as in above command.

Reboot the compute nodes to bring them into active management by Slurm. Check the Slurm status:

slurm-scyld.setup status

If any services on controller (slurmctld, slurmdbd and munge) or compute nodes (slurmd and munge) are not run-
ning, you can try to use systemctl to start individual service, or use slurm-scyld.setup cluster-restart,
slurm-scyld.setup restart and slurm-scyld.setup start-nodes to restart slurm cluster-wide, controller
only and nodes only.

ò Note

The above restart or start do not effect slurmImage.

The update-image is necessary for persistence across compute node reboots.

52 Chapter 3. Install

ICE ClusterWare Documentation, Release 12.4.0

Working with Slurm

Generate new slurm-specific config files with:

slurm-scyld.setup reconfigure # default to all 'up' nodes

Add nodes by executing:

slurm-scyld.setup update-nodes # default to all 'up' nodes

or add or remove nodes by directly editing the /etc/slurm/slurm.conf config file.

ò Note

With Configless Slurm, the slurmImage does NOT need to be reconfigured after new nodes are added -- Slurm will
automatically forward the new information to the slurmd daemons on the nodes.

Inject users into the compute node image using the sync-uids script. The administrator can inject all users, or a
selected list of users, or a single user. For example, inject the single user janedoe:

/opt/scyld/clusterware-tools/bin/sync-uids \
-i slurmImage --create-homes \
--users janedoe --sync-key janedoe=/home/janedoe/.ssh/id_rsa.pub

See Configure Administrator Authentication and /opt/scyld/clusterware-tools/bin/sync-uids -h for de-
tails.

To view the Slurm status on the server and compute nodes:

slurm-scyld.setup status

The Slurm service can also be started and stopped cluster-wide with:

slurm-scyld.setup cluster-stop
slurm-scyld.setup cluster-start

Slurm executable commands and libraries are installed in /opt/scyld/slurm/. The Slurm controller configuration
can be found in /etc/slurm/slurm.conf, and each node caches a copy of that slurm.conf file in /var/spool/
slurmd/conf-cache/. Each Slurm user must set up the PATH and LD_LIBRARY_PATH environment variables
to properly access the Slurm commands. This is done automatically for users who login when Slurm is running via
the /etc/profile.d/scyld.slurm.sh script. Alternatively, each Slurm user can manually execute module load
slurm or can add that command line to (for example) the user's ~/.bash_profile or ~/.bashrc.

For a traditional config-file-based Slurm deployment, the admin will have to push the new /etc/slurm/slurm.conf
file out to the compute nodes and then restart slurmd. Alternately, the admin can modify the boot image to include
the new config file, and then reboot the nodes into that new image.

3.10.2.2 OpenPBS

OpenPBS is only available for RHEL/CentOS 8 clusters.

See Job Schedulers for general job scheduler information and configuration guidelines. See https://www.openpbs.org
for OpenPBS documentation.

First install OpenPBS software on the job scheduler server:

3.10. Additional Software 53

https://www.openpbs.org

ICE ClusterWare Documentation, Release 12.4.0

sudo yum install openpbs-scyld --enablerepo=scyld*

Use a helper script to complete the initialization and setup the job scheduler and config file in the compute node
image(s).

ò Note

The openpbs-scyld.setup script performs the init, reconfigure, and update-nodes actions (described
below) by default against all up nodes. Those actions optionally accept a node-specific argument using the syntax
[--ids|-i <NODES>] or a group-specific argument using [--ids|-i %<GROUP>]. See Attribute Groups and
Dynamic Groups for details.

openpbs-scyld.setup init # default to all 'up' nodes
openpbs-scyld.setup update-image openpbsImage # for permanence in the image

Reboot the compute nodes to bring them into active management by OpenPBS. Check the OpenPBS status:

openpbs-scyld.setup status

If the OpenPBS daemon is not executing, then:
openpbs-scyld.setup cluster-restart

And check the status again

This cluster-restart is a manual one-time setup that doesn't affect the openpbsImage. The update-image is
necessary for persistence across compute node reboots.

Generate new openpbs-specific config files with:

openpbs-scyld.setup reconfigure # default to all 'up' nodes

Add nodes by executing:

openpbs-scyld.setup update-nodes # default to all 'up' nodes

or add or remove nodes by executing qmgr.

Any such changes must be added to openpbsImage by reexecuting:

openpbs-scyld.setup update-image openpbsImage

and then either reboot all the compute nodes with that updated image, or additional execute:

openpbs-scyld.setup cluster-restart

to manually push the changes to the up nodes without requiring a reboot.

Inject users into the compute node image using the sync-uids script. The administrator can inject all users, or a
selected list of users, or a single user. For example, inject the single user janedoe:

/opt/scyld/clusterware-tools/bin/sync-uids \
-i openpbsImage --create-homes \
--users janedoe --sync-key janedoe=/home/janedoe/.ssh/id_rsa.pub

54 Chapter 3. Install

ICE ClusterWare Documentation, Release 12.4.0

See Configure Administrator Authentication and /opt/scyld/clusterware-tools/bin/sync-uids -h for de-
tails.

To view the OpenPBS status on the server and compute nodes:

openpbs-scyld.setup status

The OpenPBS service can also be started and stopped cluster-wide with:

openpbs-scyld.setup cluster-stop
openpbs-scyld.setup cluster-start

OpenPBS executable commands and libraries are installed in /opt/scyld/openpbs/. Each OpenPBS user must set
up the PATH and LD_LIBRARY_PATH environment variables to properly access the OpenPBS commands. This is
done automatically for users who login when OpenPBS is running via the /etc/profile.d/scyld.openpbs.sh
script. Alternatively, each OpenPBS user can manually execute module load openpbs or can add that command
line to (for example) the user's ~/.bash_profile or ~/.bashrc.

3.10.2.3 PBS TORQUE

PBS TORQUE is only available for RHEL/CentOS 7 clusters. See Job Schedulers for general job scheduler
information and configuration guidelines. See https://www.adaptivecomputing.com/support/documentation-index/
torque-resource-manager-documentation for PBS TORQUE documentation.

First install PBS TORQUE software on the job scheduler server:

sudo yum install torque-scyld --enablerepo=scyld*

Now use a helper script torque-scyld.setup to complete the initialization and setup the job scheduler and config
file in the compute node image(s).

ò Note

The torque-scyld.setup script performs the init, reconfigure, and update-nodes actions (described be-
low) by default against all up nodes. Those actions optionally accept a node-specific argument using the syntax
[--ids|-i <NODES>] or a group-specific argument using [--ids|-i %<GROUP>]. See Attribute Groups and
Dynamic Groups for details.

torque-scyld.setup init # default to all 'up' nodes
torque-scyld.setup update-image torqueImage # for permanence in the image

Reboot the compute nodes to bring them into active management by TORQUE. Check the TORQUE status:

torque-scyld.setup status

If the TORQUE daemon is not executing, then:
torque-scyld.setup cluster-restart

And check the status again

This cluster-restart is a manual one-time setup that doesn't affect the torqueImage. The update-image is neces-
sary for persistence across compute node reboots.

Generate new torque-specific config files with:

3.10. Additional Software 55

https://www.adaptivecomputing.com/support/documentation-index/torque-resource-manager-documentation
https://www.adaptivecomputing.com/support/documentation-index/torque-resource-manager-documentation

ICE ClusterWare Documentation, Release 12.4.0

torque-scyld.setup reconfigure # default to all 'up' nodes

Add nodes by executing:

torque-scyld.setup update-nodes # default to all 'up' nodes

or add or remove nodes by directly editing the /var/spool/torque/server_priv/nodes config file. Any such
changes must be added to torqueImage by reexecuting:

torque-scyld.setup update-image slurmImage

and then either reboot all the compute nodes with that updated image, or additional execute:

torque-scyld.setup cluster-restart

to manually push the changes to the up nodes without requiring a reboot.

Inject users into the compute node image using the sync-uids script. The administrator can inject all users, or a
selected list of users, or a single user. For example, inject the single user janedoe:

/opt/scyld/clusterware-tools/bin/sync-uids \
-i torqueImage --create-homes \
--users janedoe --sync-key janedoe=/home/janedoe/.ssh/id_rsa.pub

See Configure Administrator Authentication and /opt/scyld/clusterware-tools/bin/sync-uids -h for de-
tails.

To view the TORQUE status on the server and compute nodes:

torque-scyld.setup status

The TORQUE service can also be started and stopped cluster-wide with:

torque-scyld.setup cluster-stop
torque-scyld.setup cluster-start

TORQUE executable commands are installed in /usr/sbin/ and /usr/bin/, TORQUE libraries are installed in
/usr/lib64/, and are therefore accessible by the default search rules.

3.10.3 Kubernetes
ICE ClusterWare™ administrators who want to use Kubernetes as a container orchestration layer across their clus-
ter can either choose to install Kubernetes manually following directions found online or use scripts provided by the
clusterware-kubeadm package to install and bootstrap Kubernetes clusters.

The provided scripts are based on the kubeadm tool and inherit both the benefits and limitations of that tool. If you
prefer to use a different tool to install Kubernetes, follow appropriate directions available online from your chosen
Kubernetes provider.

ClusterWare nodes and non-ClusterWare systems can be joined into the same Kubernetes cluster when the servers are
on the same network.

• To use clusterware-kubeadm scripts on ClusterWare nodes, install the clusterware-kubeadm package on a server
that a ClusterWare admin can use to access those nodes from scyld-nodectl. Use the following command to
install:

56 Chapter 3. Install

ICE ClusterWare Documentation, Release 12.4.0

sudo yum --enablerepo=scyld* install clusterware-kubeadm clusterware-tools

• To use clusterware-kubeadm scripts on non-ClusterWare servers, install the clusterware-kubeadm package on
all of those servers. The scripts will be run from each of those servers locally. Use the following command to
install:

sudo yum --enablerepo=scyld* install clusterware-kubeadm

After installing the software, a ClusterWare admin or a root user on a non-ClusterWare system can use the
scyld-kube tool to install the Kubernetes cluster. The default kubernetes version is hardcoded in /opt/scyld/
clusterware-kubeadm/files/core/etc/yum.repos.d/kubernetes.repo.default and has been tested. If
you want to install any other version of Kubernetes, you can append a specific version (major.minor.patch) argument
to scyld-kube. For example:

scyld-kube --version 1.31.1

Two Kubernetes control plane configuration options are supported: a single Kubernetes control plane node or a High
Available (with HAProxy and Keepalived) Kubernetes control plane with a first and additional control nodes. Both
configurations can have additional workers (non-controller nodes).

s Important

For a server to function as a Kubernetes control plane or worker, swap must be turned off. Verify current status with
swapon -s. Use swapoff -a -v to disable swap. You should not use a RAM-booted or otherwise ephemeral
compute node as Kubernetes control plane.

The following sections include an example of a single ClusterWare control pane node plus ClusterWare nodes as work-
ers. See Using Kubernetes for additional examples, including non-ClusterWare systems and multiple control plane
nodes.

3.10.3.1 Bootstrap Kubernetes Control Plane

Initialize the control plane node(s).

For a single node control plane:

• For a single ClusterWare node control plane, use the following command:

scyld-kube -i <control plane node ID> --init

• For a single non-ClusterWare node control plane, use the following command:

scyld-kube --init

For a multi-node control pane:

• For a ClusterWare multi-node control plane, use the following commands on a ClusterWare admin node:

$scyld-kube --prepare-lb <unused IP> <first control plane node ID>:<node IP>,
→˓<additional control plane node ID>:<node IP>,<additional control plane node ID>:
→˓<node IP>
$scyld-kube -i <first control plane node ID> --init-ha

• For non-ClusterWare multi-node control plane, use the following commands on the first control plane system:

3.10. Additional Software 57

ICE ClusterWare Documentation, Release 12.4.0

$scyld-kube --prepare-lb <unused IP> <first control plane node ID>:<node IP>,
→˓<additional control plane node ID>:<node IP>,<additional control plane node ID>:
→˓<node IP>
$scyld-kube --init-ha

Example

Run the following command to initialize ClusterWare node n0 (10.154.1.100) as a control plane node:

scyld-kube -i n0 --init

Messages about joining ClusterWare NODES/IMAGE and non-ClusterWare system as workers to this ClusterWare
control plane are printed out after a successful initialization. For example:

...
To join ClusterWare NODES/IMAGE as worker to this Clusterware control plane:
scyld-kube -i NODES --join --cluster n0
scyld-kube --image IMAGE --join --cluster n0

To join non ClusterWare system as worker to this ClusterWare control plane:
scyld-kube --join --token yp6lxa.wcb6g48ud3f2cwng --cahash␣
→˓sha256:413a6267bac67ff749734749dc8b5f60323a68c64bf7fc8e99292dd9b29040b2 --cluster 10.
→˓154.1.100
...

3.10.3.2 Checking Deployment Status

Verify that Kubernetes is ready on each system after the first initialization. Verify again after each control plane node
or worker node joins.

• For a ClusterWare control plane, use the following command:

scyld-nodectl -i <node ID> exec kubectl get nodes -o wide

• For a non-ClusterWare control plane, use the following command:

kubectl get nodes -o wide

Example

The following example shows the Kubernetes cluster has ClusterWare n0 as a working control plane.

[admin@cwhead ~]$ scyld-nodectl -i n0 exec kubectl get nodes -o wide
NAME STATUS ROLES AGE VERSION INTERNAL-IP EXTERNAL-IP␣
→˓ OS-IMAGE KERNEL-VERSION CONTAINER-RUNTIME
n0.cluster.local Ready control-plane 1d v1.31.2 10.154.1.100 <none> ␣
→˓ Rocky Linux 8.10 (Green Obsidian) 4.18.0-553.el8_10.x86_64 containerd://1.6.32

3.10.3.3 Additional Configuration

Depending on your ClusterWare cluster configuration, the INTERNAL-IP of the ClusterWare control plane may not
match the IP address known to the ClusterWare platform. If they are different, replace the --cluster value with the
INTERNAL-IP value when using the printed out messages to join additional control plane nodes and workers. In the

58 Chapter 3. Install

ICE ClusterWare Documentation, Release 12.4.0

example, the INTERNAL-IP of the ClusterWare control plane is 10.154.1.100, which is the same as n0’s IP address
known to the ClusterWare platform.

If you are joining additional control plane nodes, you may need to generate a new certificate key because the one printed
in the output expires in 2 hours.

For a ClusterWare control plane, use the following command to generate a new key:

[adminr@cwhead ~]$ scyld-nodectl -i <node ID> exec kubeadm init phase upload-certs --
→˓upload-certs
[upload-certs] Storing the certificates in Secret "kubeadm-certs" in the "kube-system"␣
→˓Namespace
[upload-certs] Using certificate key:
ad556dcd5c795a42321be46b0a3cf8a52d7a1c7fef6e0bd96c65525569c39105

On a non-ClusterWare control plane, use the following command:

[root@kube1 ~]$ kubeadm init phase upload-certs –upload-certs

Replace the --certificate-key value with the new certificate key you just generated when using the output messages
to join additional control plane nodes.

3.10.3.4 Adding Workers

1. Using the messages output after initialization as a guide, join workers to the control plane.

To join ClusterWare nodes as workers to a ClusterWare control plane:

scyld-kube -i n[<node IDs>] --join --cluster <control plane node ID>

To join ClusterWare nodes as workers to a non-ClusterWare control plane:

scyld-kube -i n[<node IDs>] --join --token <token value> --cahash <cahash value> --
→˓cluster <control plane IP>

To join non-ClusterWare systems as workers to a ClusterWare control plane:

scyld-kube --join --token <token value> --cahash <cahash> --cluster <control plane␣
→˓IP>

To join non-ClusterWare systems as workers to a non-ClusterWare control plane:

scyld-kube --join --token <token value> --cahash <cahash value> --cluster <control␣
→˓plane IP>

2. For ClusterWare workers, use the following commands to create a Kubernetes worker node image and then boot
the nodes with the node image as workers:

$ scyld-bootctl -i DefaultBoot clone name=<boot name>

$ scyld-imgctl -i DefaultImage clone name=<image name>

$ scyld-kube --image <image name> --join --cluster <control plane node ID>

$ scyld-bootctl -i <boot name> up image=<image name>

$ scyld-nodectl -i n[5-10] set _boot_config=<boot name>

$ scyld-nodectl -i n[5-10] reboot

3.10. Additional Software 59

ICE ClusterWare Documentation, Release 12.4.0

Example

For the single ClusterWare control plane example, the following messages are printed out after the control plane ini-
tialization:

...
To join ClusterWare NODES/IMAGE as worker to this Clusterware control plane:
scyld-kube -i NODES --join --cluster n0
scyld-kube --image IMAGE --join --cluster n0

To join non ClusterWare system as worker to this ClusterWare control plane:
scyld-kube --join --token yp6lxa.wcb6g48ud3f2cwng --cahash␣
→˓sha256:413a6267bac67ff749734749dc8b5f60323a68c64bf7fc8e99292dd9b29040b2 --cluster 10.
→˓154.1.100
...

1. Using the message output after initialization as a guide, join ClusterWare nodes (n[1-4]) as workers to the control
plane node n0 with the following command:

$ scyld-kube -i n[1-4] --join --cluster n0

2. Create a Kubernetes worker node image and then boot n[5-10] with the node image as workers to control plane
n0:

$ scyld-bootctl -i DefaultBoot clone name=KubeWorkerBoot
$ scyld-imgctl -i DefaultImage clone name=KubeWorkerImage
$ scyld-kube --image KubeWorkerImage --join --cluster n0
$ scyld-bootctl -i KubeWorkerBoot up image=KubeWorkerImage
$ scyld-nodectl -i n[5-10] set _boot_config=KubeWorkerBoot
$ scyld-nodectl -i n[5-10] reboot

3. Verify that Kubernetes is ready on each system using the following command:

$ scyld-nodectl -i n0 exec kubectl get nodes -o wide
NAME STATUS ROLES AGE VERSION INTERNAL-IP ␣
→˓EXTERNAL-IP OS-IMAGE KERNEL-VERSION ␣
→˓CONTAINER-RUNTIME
n0.cluster.local Ready control-plane 1d v1.31.2 10.154.1.100 <none> ␣
→˓ Rocky Linux 8.10 (Green Obsidian) 4.18.0-553.el8_10.x86_64 ␣
→˓containerd://1.6.32
n1.cluster.local Ready <none> 1d v1.31.2 10.154.1.101 <none> ␣
→˓ Rocky Linux 8.10 (Green Obsidian) 4.18.0-553.el8_10.x86_64 ␣
→˓containerd://1.6.32

The example output shows the Kubernetes cluster has ClusterWare n0 as a working control plane and n1 as a
worker.

scyld-kube

NAME
scyld-kube -- Tool for installing Kubernetes control plane and worker nodes.

USAGE
scyld-kube

[-h | --help] [--init] [--join] [--init-ha] [--join-ha] [--version VERSION]

60 Chapter 3. Install

ICE ClusterWare Documentation, Release 12.4.0

[--prepare-lb OPTIONS] [--cluster [IP | NODE]] [--image IMAGE] [--token TOKEN]
[--cahash CAHASH] [--certificate-key KEY] [[-i | --ids] NODES] [--all] [--up]
[--core-inst]

DESCRIPTION
To administer Kubernetes in a cluster, install the clusterware-kubeadm package on either a ClusterWare admin node,
a full-install ClusterWare compute node, or a separate non-ClusterWare server. This package contains the scyld-kube
tool.

STANDARD OPTIONS
-h, --help Print usage message and exit. Ignore trailing args, parse and ignore preceding

args.

--init Initialize the only control plane node.

--join Add worker node.

--init-ha Initialize the first control plane node for High Availability (HA).

--join-ha Add additional control plane node(s) for High Availability (HA).

--version VERSION Optionally specify a major.minor.patch version for an --init, --init-ha,
--join, or --join-ha.

--prepare-lb APISERVER_VIP[:APISERVER_PORT:ROUTER_ID:AUTH_PASS]
FIRST_CONTROL_PLANE_NODE_ID:FIRST_CONTROL_PLANE_NODE_IP, ADDI-
TIONAL_CONTROL_PLANE_NODE_ID1:ADDITIONAL_CONTROL_PLANE_NODE_IP1,...

Re-generate High Availability (HA) load balancer config files from local template.

APISERVER_VIP
Required. The virtual IP address of the Kubernetes API server within the network subnet.

APISERVER_PORT
Optional. An unused port for the API server, default 4200.

Note: All three optional values must be specified if non-Default values are to be used.

ROUTER_ID:
Optional. Default 51.

Note: All three optional values must be specified if non-Default values are to be used.

AUTH_PASS:
Optional. Default 42

Note: All three optional values must be specified if non-Default values are to be used.

FIRST_CONTROL_PLANE_NODE_ID:FIRST_CONTROL_PLANE_NODE_IP, ADDI-
TIONAL_CONTROL_PLANE_NODE_ID1:ADDITIONAL_CONTROL_PLANE_NODE_IP1,...

A comma- and a colon-separated list of first and additional hosts' unique ID (can be host-
names) and IP addresses.

--cluster [IP | NODE]
Specify the cluster (first control plane node); use with --join or --join-ha.

--image IMAGE Optionally modify the specified image for persistence across compute node re-
boots, so that nodes with this IMAGE auto-join when booted.

--token TOKEN Optionally specify first control plane node's token; use with --join or
--join-ha.

3.10. Additional Software 61

ICE ClusterWare Documentation, Release 12.4.0

--cahash CAHASH Optionally specify first control plane node's discover-token-ca-cert-hash; use with
--join or --join-ha.

--certificate-key KEY Optionally specify first control plane node's certificate-key; use with
--join-ha.

CLUSTERWARE NODE SELECTION OPTIONS
-i, --ids NODES A comma-separated list of nodes or an admin-defined group of nodes to act upon.

--all Configure all nodes (rare).

--up Configure all up nodes (rare).

ADVANCED OPTIONS
--core-inst Only install core packages.

EXAMPLES
RETURN VALUES
Upon successful completion, scyld-kube returns 0. On failure, an error message is printed to stderr and scyld-kube
returns 1.

3.10.4 OpenMPI, MPICH, and/or MVAPICH
The ICE ClusterWare™ platform distributes several versions of OpenMPI, MPICH, and MVAPICH2, and other ver-
sions are available from 3rd-party providers. Different versions of the ClusterWare packages can coexist, and users
can link applications to the desired libraries and execute the appropriate binary executables using module load com-
mands. Typically one or more of these packages are installed in the compute node images for execution, as well as on
any other server where OpenMPI (and similar) applications are built.

View the available ClusterWare versions using:

yum clean all # just to ensure you'll see the latest versions
yum list --enablerepo=scyld* | egrep "openmpi|mpich|mvapich" | egrep scyld

The OpenMPI, MPICH, and MVAPICH packages are named by their major-minor version numbers, e.g., 4.0, 4.1, and
each has one or more available major-minor "point" releases, e.g., openmpi4.1-4.1.1 and openmpi4.1-4.1.4.

A simple yum install will install the latest "point" release for the specified major-minor version, e.g.:

sudo yum install openmpi4.1 --enablerepo=scyld*

installs the default GNU libraries, binary executables, buildable source code for various example programs, and man
pages for openmpi4.1-4.1.4. The openmpi4.1-gnu packages are equivalent to openmpi4.1.

Alternatively or additionally:

sudo yum install openmpi4.1-intel --enablerepo=scyld*

installs those same packages built using the Intel oneAPI compiler suite. These compiler-specific packages can co-exist
with the base GNU package. Similarly you can additionally install openmpi4.1-nvhpc for libraries and executables built
using the Nvidia HPC SDK suite, and openmpi-aocc for libraries and executables built using AMD Optimizing C/C++
and Fortran Compilers. Additionally openmpi4.1-hpcx_cuda-${compiler} rpms sets are built against Nvidia HPC-X
and cuda software packages and with gnu, intel, nvhpc and aocc compilers.

62 Chapter 3. Install

ICE ClusterWare Documentation, Release 12.4.0

ò Note

The ClusterWare platform provides openmpi packages that are built with third party software and compilers with
best effort. However if an openmpi rpm of a certain combination of compiler, software, OpenMPI version and distro
is missing, that is because that combination failed to build or package failed to run. Also, the third party software
and compilers that are needed for those OpenMPI packages must be installed in addition to clusterware installation.

s Important

The ClusterWare yum repo includes various versions of openmpi* RPMs which were built with different sets of
options by different compilers, each potentially having requirements for specific other 3rd-party packages. In gen-
eral, avoid installing openmpi RPMs using a wildcard such as openmpi4*scyld and instead carefully install only
specific RPMs from the ClusterWare yum repo together with their specific required 3rd-party packages.

Suppose openmpi4.1-4.1.1 is installed and you see a newer "point" release openmpi4.1-4.1.4 in the repo. If you do:

sudo yum update openmpi4.1 --enablerepo=scyld*

then 4.1.1 updates to 4.1.4 and removes 4.1.1. Suppose for some reason you want to retain 4.1.1, install the newer 4.1.4,
and have both "point" releases coexist. For that you need to download the 4.1.4 RPMs and install (not update) them
using rpm, e.g.,

sudo rpm -iv openmpi4.1-4.1.4*

You can add OpenMPI (et al) environment variables to a user's ~/.bash_profile or ~/.bashrc file, e.g., add module
load openmpi/intel/4.1.4 to default a simple OpenMPI command to use a particular release and compiler suite.
Commonly a cluster uses shared storage of some kind for /home directories, so changes made by the cluster adminis-
trator or by an individual user are transparently reflected across all nodes that access that same shared /home storage.

For OpenMPI, consistent user uid/gid and passphrase-less key-based access is required for a multi-threaded application
to communicate between threads executing on different nodes using ssh as a transport mechanism. The administrator
can inject all users, or a selected list of users, or a single user into the compute node image using the sync-uids
script. See Configure Administrator Authentication and /opt/scyld/clusterware-tools/bin/sync-uids -h
for details.

To use OpenMPI (et al) without installing either torque-scyld or slurm-scyld, then you must configure the firewall
that manages the private cluster network between the head node(s), server node(s), and compute nodes. See Firewall
Configuration for details.

3.10. Additional Software 63

CHAPTER

FOUR

ADMINISTRATION

The Overview describes the ICE ClusterWare™ system architecture and design and basic terminology necessary to
properly configure and administer a ClusterWare cluster.

This ClusterWare Administration Guide is intended for use by ClusterWare administrators and advanced users. As is
typical for any Linux-based system, the administrator must have root privileges (if only via sudo) to perform many of
the administrative tasks described in this document.

ò Note

This guide is written with the assumption that the administrator has a background in a Unix or Linux operating en-
vironment; therefore, the document does not cover basic Linux system administration. If you do not have sufficient
knowledge for using or administering a Linux system, we recommend that you first study other resources, either in
print or online.

4.1 Introduction
This guide provides specific information about tools and methods for maintaining the ICE ClusterWare™ cluster, ways
to control cluster usage, methods for batching jobs and controlling the job queue, how load balancing is handled in the
cluster, and optional tools that can be useful in administrating your cluster.

Both the ClusterWare graphical user interface (GUI) and the command-line interfaces employ the same underlying in-
terfaces to the ClusterWare database. When applicable, instructions are given for completing tasks in both the command
line and the GUI.

� Tip

The ClusterWare CLI Cheat Sheet provides a quick reference for common commands and arguments. See https:
//docs.ice.penguinsolutions.com/clusterware-cli-cheatsheet-12.4.pdf for details.

4.2 ICE ClusterWare Graphical User Interface
The ICE ClusterWare™ graphical user interface (GUI) is available on all head nodes using a browser to access http:/
/<HEADNODE_IP>. The default authentication is done through PAM, so cluster administrators can use their existing
credentials for the head node.

The ClusterWare GUI opens to an Overview page. Use the left navigation panel to access detailed pages for nodes,
boot configurations, user management, and so on.

64

https://docs.ice.penguinsolutions.com/clusterware-cli-cheatsheet-12.4.pdf
https://docs.ice.penguinsolutions.com/clusterware-cli-cheatsheet-12.4.pdf

ICE ClusterWare Documentation, Release 12.4.0

The following pages are available:

• Cluster Overview Page

• Heads Page

• Dynamic Groups Page

• Nodes Page

• Attribute Groups Page

• Naming Pools Page

• Networks Page

• Hostnames Page

• Boot Configurations Page

• Images Page

• Image Sources Page

• Git Repositories Page

• Grafana Login

• Administrators Page

4.2. ICE ClusterWare Graphical User Interface 65

ICE ClusterWare Documentation, Release 12.4.0

The Grafana Monitoring Dashboard (see Grafana Telemetry Dashboard) is also available on all head nodes, either
by clicking on the Telemetry Dashboard link in the left navigation pane or by accessing http://<HEADNODE_IP>/
grafana. The Grafana default credentials are the username "admin" and the database.admin_pass from the base.ini:

sudo grep admin_pass /opt/scyld/clusterware/conf/base.ini

Administrators can change the password within the Grafana graphical interface.

4.3 ICE ClusterWare Command Line Tools
This section describes the commonly used arguments and subcommands used by the various ICE ClusterWare™ tools.
These tools can be used by the cluster administrator and are not intended for use by the ordinary user.

� Tip

The ClusterWare CLI Cheat Sheet provides a quick reference for common commands and arguments. See https:
//docs.ice.penguinsolutions.com/clusterware-cli-cheatsheet-12.4.pdf for details.

Certain arguments are shared among nearly all the scyld-*ctl tools, and instead of repeatedly describing these
arguments, we will cover them here. Many of these arguments control the general operation of the tools, i.e. by
printing help (--help or -h), selecting targets (--all or -a, --ids or -i), changing the verbosity or client con-
figuration (--verbose or -v, --quiet or -q, --config or -c), allowing a user to override basic connection de-
tails (--base-url, --user or -u), or changing output formatting (--show-uids, --human, --json, --pretty or
--no-pretty). Many of these arguments are self-explanatory, but others are described below:

4.3.1 --all and --ids
Tools that accept the --all (short name -a) and --ids (short name -i) arguments operate on corresponding database
objects. For instance, scyld-nodectl is used for manipulating node objects in the database, and scyld-attribctl
is used for manipulating attribute groups.

As one might expect, --all can be used to make an alteration to all of a given class of objects at once. For example,
to remove a given attribute such as _boot_style from all attribute groups, e.g.:

scyld-attribctl --all clear _boot_style

Alternatively, an administrator can specify objects by name, or UID, or truncated UID (at least the first 5 characters of
the UID are required to reduce the chance of accidental selection). Certain object types can also be selected based on
some core fields, e.g. MAC, IP, or index for nodes. Further, nodes can be selected using the node query language, e.g.:

scyld-nodectl --ids n[0-5] --ids 08:00:27:F0:44:35 ls

For convenience, many tools can be executed without explicitly selecting any objects. Specifically, query tools such
as list will default to --all if no selection arguments are used, and many other tools will operate on a single object if
only one object of the expected type exists in the system.

4.3.2 --config
All client tools accept a --config argument which can be used to specify a client INI file. By default several loca-
tions are checked for configuration INI files with each able to override variables from the previous files. The client
configuration search order is:

• /etc/scyldcw/settings.ini

• /etc/scyldcw/${TOOL}.ini

• ~/.scyldcw/settings.ini

66 Chapter 4. Administration

https://docs.ice.penguinsolutions.com/clusterware-cli-cheatsheet-12.4.pdf
https://docs.ice.penguinsolutions.com/clusterware-cli-cheatsheet-12.4.pdf

ICE ClusterWare Documentation, Release 12.4.0

• ~/.scyldcw/${TOOL}.ini

• the --config specified path

• command line arguments

These configuration files should be INI formatted, and the [ClusterWare] section can contain the following variables:

client.base_url = http://localhost/api/v1
client.sslverify = True
client.authuser = $USER
client.authpass = None
client.format = human
client.pretty = False

The base_url specifies the URL that the tools should use to connect to the head node's REST API and defaults to
connecting to the standard location (http://localhost/api/v1) on the local machine. If the base_url specifies an
HTTPS URL, then a client can disable SSL verification, but this is strongly discouraged as it bypasses the protections
provided by HTTPS against impersonation and man-in-the-middle attacks. The authuser and authpass can be included
to simplify authentication to the service, but be aware that specifying the authpass here may not be secure, depending
on your environment.

The format argument affects the output format of data returned by the tools. The default value of "human" causes the
tools to output an indented format with various computed values augmented with human-readable summaries. The
alternative value of "json" will output the results as JSON formatted text, and the pretty argument can be used to turn
on indentation for that JSON output.

4.3.3 --base-url and --user
Since an administrator may want to periodically connect to different head nodes or as a different user, command line ar-
guments are provided to override those configuration settings. For example, the entire string passed to the --base-url
argument is treated as a URL and is passed to the underlying Python requests library.

Any string passed to the --user argument will be split at its first colon, and the remainder of the string will be treated as
the user's password. Providing a password this way is convenient, especially during testing, but is generally discouraged
as the password could then be visible in /proc while the tool is running. If no password is provided either through
command line or client configuration, then one will be requested when needed.

4.3.4 --show-uids, --human, --json, --pretty/--no-pretty
These arguments are used to change the tool output format, much like the corresponding client configuration variables
described above. The --human and --json arguments override the client.format variable, and --pretty and
--no-pretty can be used to override the client.pretty variable.

By default, tool output will show an object's name when referring to a named object, and the UID (or shortened UID)
only if no name is defined. Using the --show-uids argument forces the display of full UIDs in place of more human-
readable options. This is uglier, but occasionally useful to be absolutely certain about what object is being referenced.

4.3.5 --csv, --table, --fields
For ease of reading and automated parsing, the scyld tools can also produce output as CSV or in a table. Use the
--fields argument to select fields to display and select from --csv or --table to print in your preferred format:

$ scyld-nodectl --fields "mac,Assigned IP=ip,BootConfig=attributes._boot_config" \
--table ls -l

Nodes | mac | Assigned IP | BootConfig
------+-------------------+--------------+------------

(continues on next page)

4.3. ICE ClusterWare Command Line Tools 67

ICE ClusterWare Documentation, Release 12.4.0

(continued from previous page)

n0 | 08:00:27:f0:44:35 | 10.10.24.100 | DefaultBoot
n1 | 08:00:27:a2:3f:c9 | 10.10.24.101 | DefaultBoot
n2 | 08:00:27:e5:19:e5 | 10.10.24.102 | DefaultBoot

The above demonstrates how to both assign column names and select nested values such as individual attributes.

4.4 Common Subcommand Actions
In addition to the above arguments, some subcommand actions are common among the scyld-*ctl tools as well:
list, create, clone, update, replace, delete. The precise details of what additional arguments these subcom-
mand actions accept may differ between tools, but the generally supported arguments are discussed here.

4.4.1 list (ls)
List the requested object names, and optionally with --long or -l will display object details. The --raw option will
display the actual JSON content as returned by the ClusterWare API call.

4.4.2 create (mk)
Create a new object using name-value pairs provided either on the command line or passed using the --content
argument described below.

4.4.3 clone (cp)
Copy existing objects to new UIDs and names. Individual fields in the new objects can be overridden by name-value
or a --content argument described below.

4.4.4 update (up)
Modify existing objects altering individual fields in name-value pairs or a --content argument described below.

4.4.5 replace (re)
Much like update, but completely replace the existing objects with new objects from fields defined in name-value
pairs or a --content argument described below.

4.4.6 delete (rm)
Delete objects.

4.5 Files in database objects
In the ClusterWare database, boot configurations and images both contain references to files, either a kernel and an
initramfs, or a root file system. The files themselves are not stored in the database but instead are referenced by the
system on backend storage through plugins, such as the local_files plugin that works with locally mounted storage
through the POSIX API.

When listing the details of a database object containing a file reference, the reference will be shown as a dictionary
containing the file size, modification time, checksum, and an internal UID. To explore this we will start by listing a
boot configuration created earlier in this document:

68 Chapter 4. Administration

ICE ClusterWare Documentation, Release 12.4.0

$ bin/scyld-bootctl ls -l
Boot Configurations
TestBoot
initramfs
chksum: aa1161aa52b98287a3eac4677193c141a3648ebc
mtime: 2019-02-09 21:13:08 UTC (0:00:52 ago)
size: 20.0 MiB (20961579 bytes)
uid: d247e4aa1fde4ac3853e78c0f7683947

kernel
chksum: 5a464d2a82839dac21c0fb7350d9cb0d055f8fed
mtime: 2019-02-09 21:08:34 UTC (0:05:26 ago)
size: 6.3 MiB (6639808 bytes)
uid: fc96da5531b94038b38d7ef662b34947

last_modified: 2019-02-09 21:08:34 UTC (0:05:26 ago)
name: TestBoot
release: 3.10.0-957.1.3.el7.x86_64
uid: 4978077e53b944b38c4cda007b9b97b7

Files have been uploaded to both the initramfs and kernel fields. The chksum fields are the SHA-1 output and are used
to detect data corruption, not as a security feature. The mtime is the UTC timestamp of the last time the underlying file
was modified, and the size field is the size of the file in bytes. The uid field is how the object is referenced within the
ClusterWare system and is the name passed to whatever plugin is interfacing with underlying storage. In the case of
the local_files plugin, this is used as the name of the file on disk.

Because this output was generated for human readability, some fields (last_modified, mtime, size) have been augmented
with human readable representations. Also, the release field was determined by examining the contents of the kernel
file when it was uploaded.

4.6 The then argument
Various tools (most commonly scyld-nodectl, although also scyld-adminctl, scyld-attribctl,
scyld-bootctl, and scyld-imgctl) accept the then argument, which serves as a divider of a serial sequence of
multiple subcommands for a single invocation of the scyld-* tool.

For example,

scyld-nodectl -i n0 reboot then waitfor up then exec uname -r

that initiates a reboot of node n0, waits for the node to return to an "up" state, and then executes uname -r on the node.

If any subcommand in the sequence fails, then the tool reports the error, skips any subsequent subcommands, and
terminates.

4.7 The --content argument
The --content argument can be passed to several of the tools described earlier and is always paired with an argument
to accept name-value pairs that can override content values. The --content argument can be followed by a JSON
string or by a file containing JSON formatted data, INI formatted data, or a text file where each object is represented
by rows of name-value pairs. If the argument to --content is a filename, it must be prefixed with an '@' symbol.

For example, an administrator could create a new boot configuration as follows:

scyld-bootctl create --content \
'{"name": "TestBoot", "kernel": "@/boot/vmlinuz-3.10.0-957.1.3.el7.x86_64"}'``

4.6. The then argument 69

ICE ClusterWare Documentation, Release 12.4.0

Of course, a boot configuration also requires an initramfs:

cat > content.ini <<EOF
[BootConfig]
initramfs: @initramfs-3.10.0-957.1.3.el7.x86_64.img
EOF

scyld-bootctl -iTestBoot update --content @content.ini

Adding nodes to the database one at a time is tedious for large clusters, and the --content argument can streamline
this process. Below are examples of three different files that could be passed via the --content argument to add nodes
with explicit indices to the database:

JSON:

[
{ "mac": "00:11:22:33:44:55", "index": 1 },
{ "mac": "00:11:22:33:44:66", "index": 2 },
{ "mac": "00:11:22:33:44:77", "index": 3 },

]

INI:

[Node0]
mac: 00:11:22:33:44:55
index: 1

[Node1]
mac: 00:11:22:33:44:66
index: 2

[Node2]
mac: 00:11:22:33:44:77
index: 3

Text:

mac=00:11:22:33:44:55 index=1
mac=00:11:22:33:44:66 index=2
mac=00:11:22:33:44:77 index=3

Although providing multiple objects at once makes sense for the create subcommand, the clone, update, and
replace subcommands require a list of fields to alter and will collapse multiple objects into one set of variables.
For example:

[
{ "name": "TestBoot" },
{ "kernel": "@/boot/vmlinuz-3.10.0-957.1.3.el7.x86_64" },
{ "name": "AnotherBoot" }

]

when passed to scyld-bootctl would result in the selected boot configuration(s) being renamed to "AnotherBoot"
and assigned the /boot/vmlinuz-3.10.0-957.1.3.el7.x86_64 kernel.

70 Chapter 4. Administration

ICE ClusterWare Documentation, Release 12.4.0

4.8 Variable Substitution
Data that is downloaded or processed by a ICE ClusterWare™ head node can often include per-node modifications
through a variable substitution framework. Much like a templating system, an admin can create a baseline file, e.g. a
kickstart file, and have the ClusterWare platform automatically replace entries with node- or head-specific data. Thus,
one can dynamically include the node's name or IP address, or a head-node's base URL or key information.

example kickstart fragment

Perform a SOL friendly text-based install.
text

Pull some basics from the head node.
url --url <root_url()>
lang <head[lang]>
keyboard <head[keymap]>
timezone <head[timezone]>

include another file
<include(partial.ks)>

The ClusterWare platform currently allows variable substitution in kickstart files, ZTP scripts and configuration files,
and the power_uri field for a node. The goal of these substitutions is to provide mechanisms to generalize the files for
simpler configuration with fewer node-specific files or commands.

The <include(partial.ks)> tag shown in the example includes another file into the output, performing variable sub-
stitution on the included content as well. The include tag allows a cluster administrator to break larger files into man-
ageable hunks that can then be included into a top-level kickstart file, much like a C or C++ #include <filename>.

4.8.1 Node Attributes, Hardware, and Status
Any node's attribute can be referenced as <a[name]> or <attributes[name]> and that text will be replaced with the
value corresponding to the “name”. Similarly, values from the hardware section of scyld-nodectl ls -L can be referenced
as <h[name]> or <hardware[name]> and status information is referenced as <s[name]> or <status[name]>. Fields
outside of attributes and hardware, such as index, ip, or MAC can be referenced by <n[name]> or <node[name]>.

4.8.2 Head Node Substitutions
In addition to compute node-specific fields, a few head node-specific fields are also available in kickstart files:

head[keymap] Kickstart keymap arguments like --vckeymap=X --xlayouts=Y
head[lang] System locale
head[timezone] Time zone

When used within downloadable text files, such as kickstart and ZTP files, a few other parameters are available as well:

param[X] X is a parameter provided as part of the requesting URL
cw[base_url]A base URL that should be functional for the requestor
cw[head] IP address of the parent head node extracted from the base URL
cw[keys] System-wide authorized keys list including head node keys and cluster administrator keys. Suitable

for appending to .ssh/authorized_keys

4.8. Variable Substitution 71

ICE ClusterWare Documentation, Release 12.4.0

4.8.3 Kickstarting From A Repo
When downloading a kickstart file from a repo-based boot configuration, a URL parameter is added that references the
repo, allowing for additional substitutions. In this case the substitutions are implemented as functions with a slightly
different syntax:

<root_url()> Link to the root of the full ISO file if the repo contains one
<iso_url()> Link to the full ISO file if the repo contains one
<repo_url()> Rarely if ever used. Refers to a specific URL in a ClusterWare repo

Note that all of these functions accept a repo name or UID as an argument but will use the automatically provided
URL parameter if no repo is explicitly specified. The <repo_url()> function also includes a second optional integer
argument to specify the index of the URL in the referenced repo.

4.9 Manage Cluster

4.9.1 Cluster Overview Page
After a successful login, the Overview page displays and presents the basic cluster health and status in summary panels.
You can return to the Overview page using Cluster > Overview in the left navigation panel or by clicking the logo in
the header bar.

At the top of the Overview page is a link to the locally installed ICE ClusterWare™ HTML documentation. The upper
right of each panel includes an "i" icon, which takes you to the relevant contextual documentation for that panel.

72 Chapter 4. Administration

ICE ClusterWare Documentation, Release 12.4.0

A link at the lower right of each panel (labeled Manage <panel-name>), or the panel title in the left sidebar takes you
to that panel's detailed information.

The Refresh control is available on all pages and controls how often the GUI retrieves database contents. You can
change the time interval or disable automatic updates altogether.

The Overview's ClusterWare Disk Usage panel's Manage Head Nodes link (see Heads Page) takes you to the Overview
Heads page with disk usage and head node details.

Most of the more detailed pages show various entries (the lists of nodes, boot configurations, administrators, Git repos-
itories, etc.) listed in a table. Table actions are available in the More menu, reachable by clicking on the ellipsis
(...).

4.9.2 scyld-clusterctl
NAME
scyld-clusterctl -- Tool for manipulating global cluster settings.

USAGE
scyld-clusterctl

[-h] [-v] [-q] [[-c | --config] CONFIG] [--base-url URL] [[-u | --user]
USER[:PASSWD]] [--human | --json | --csv | --table] [--pretty | --no-pretty] [--fields
FIELDS] [--get-group | --set-group ATTRIB_GROUP] [--get-naming | --set-naming
PATTERN] [--get-influx-token | --set-influx-token PATTERN] [--get-accept-nodes |
--set-accept-nodes T|F] [--get-distro | --set-distro DISTRO] |--image-formats]
{repos, distros, heads, pools, dyngroups, gitrepos, certs} ...

DESCRIPTION
Query and modify global cluster settings. This tool also includes commands for modifying the repositories and distri-
butions used when making images, as well as commands to interact with cluster head nodes.

OPTIONAL ARGUMENTS
-h, --help Print usage message and exit. Ignore trailing args, parse and ignore preceding

args.

-v, --verbose Increase verbosity.

-q, --quiet Decrease verbosity.

-c, --config CONFIG Specify a client configuration file CONFIG.

ARGUMENTS TO OVERRIDE BASIC CONFIGURATION DETAILS
--base-url URL Specify the base URL of the ClusterWare REST API.

-u, --user USER[:PASSWD]
Masquerade as user USER with optional colon-separated password PASSWD.

FORMATTING ARGUMENTS
--human Format the output for readability (default).

--json Format the output as JSON.

--csv Format the output as CSV.

--table Format the output as a table.

--pretty Indent JSON or XML output, and substitute human readable output for other for-
mats.

--no-pretty Opposite of --pretty.

4.9. Manage Cluster 73

ICE ClusterWare Documentation, Release 12.4.0

--fields FIELDS Select individual fields in the result or error.

CLUSTER-WIDE SETTINGS AND COMMANDS
--get-group Print the default attribute group id.

--set-group ATTRIB_GROUP Set the default attribute group.

--get-naming Print the default node naming pattern.

--set-naming PATTERN Set the default node naming pattern.

--get-influx-token Print the InfluxDB API token.

--set-influx-token TOKEN Set the InfluxDB API token.

--get-accept-nodes Display whether or not unknown nodes should be automatically added.

--set-accept-nodes T|F
Set whether unknown nodes should be automatically added (T=true) or not (F=false).

--get-distro Get the current default distro.

--set-distro DISTRO Set the default distro to DISTRO.

--image-formats List image formats supported by the head node(s).

--get-auth-config Print the authentication config.

--set-auth-config AUTHCFG Set the authentication config.

DATABASE QUERYING AND MODIFICATION, SELECT A CLASS OF DATABASE OBJECT
repos {list,ls, create,mk, clone,cp, update,up, replace,re, delete,rm, download}

Manipulate available repos using a subcommand:

list (ls): List information about repo(s).

create (mk): Add a repo.

clone (cp): Copy repo to new identifier.

update (up): Modify repo fields.

replace (re): Replace all repo fields. Deprecated in favor of "update".

delete (rm): Delete repo(s).

download: Download named files (any of 'iso').

-i, --ids REPOS A comma-separated list of repos to query or modify.

-a, --all Interact with all repos (default for list).

distros {list,ls, create,mk, clone,cp, update,up, replace,re, delete,rm, import}
Manipulate available distros using a subcommand:

list (ls): List information about distro(s).

create (mk): Add a distro.

clone (cp): Copy distro to new identifier.

update (up): Modify distro fields.

replace (re): Replace all distro fields. Deprecated in favor of "update".

delete (rm) [-r, --recurse]: Delete distro(s).

-r, --recurse Optionally also delete any referenced repo.

74 Chapter 4. Administration

ICE ClusterWare Documentation, Release 12.4.0

import --name NAME [--release REL] FILE ...: Import one or more FILE repos into a distro NAME, and REL is
an optional release string.

-i, --ids DISTROS A comma-separated list of distros to query or modify.

-a, --all Interact with all distros (default for list).

heads [-i HEADS] [-a | --all] {list,ls, clean, service, delete,rm}
Interact with cluster head nodes using a subcommand.

If multiple head nodes, then:

-i HEADS A comma-separated list of head nodes to query or modify.
-a, --all Interact with all head nodes (default for *list* and *clean*).

list (ls): List information about services on the head node(s).

clean [ACTION]: Clean unreferenced objects from head node database, where ACTION is:

--all: Trigger all implemented cleaning.
--files: Delete any unknown files from storage.
--heads Remove out-of-date head nodes.
--database Scrub the database for broken references.
--dry-run Take no action, but display what would be done.
(default) --all --dry-run

delete (rm): Delete head nodes.

service [NAMES] [ACTION]: Interact with ClusterWare services (default: list), where ACTION is:

--start: Start the service(s) NAMES.
--stop: Stop the service(s) NAMES.
--restart: Restart the service(s) NAMES.
--enable: Enable the service(s) NAMES.
--disable: Disable the service(s) NAMES.

pools {list,ls, create,mk, clone,cp, update,up, replace,re, delete,rm}
Manipulate compute node name pools using a subcommand:

list (ls): List information about the name pools.

create (mk): Add a name pool.

clone (cp): Copy name pools to new identifiers.

update (up): Modify name pool fields.

replace (re): Replace all name pool fields. (Deprecated - use update.)

delete (rm): Delete name pools.

-i, --ids NAMINGPOOLS A comma-separated list of name pools to query or modify.

-a, --all Interact with all name pools (default for list).

dyngroups {list,ls, create,mk, clone,cp, update,up, replace,re, delete,rm, nodes}
Manipulate dynamic groups using a subcommand:

list (ls): List information about the dynamic groups.

create (mk): Add a dynamic group.

clone (cp): Copy dynamic groups to new identifiers.

4.9. Manage Cluster 75

ICE ClusterWare Documentation, Release 12.4.0

update (up): Modify dynamic group fields.

replace (re): Replace all dynamic group fields. (Deprecated - use update.)

delete (rm): Delete dynamic groups.

nodes: List nodes that currently meet the same selector.

-i, --ids DYNGROUPS A comma-separated list of dynamic groups to query or modify.

-a, --all Interact with all dynamic groups (default for list).

gitrepos {list,ls, create,mk, clone,cp, update,up, delete,rm}
Manipulate git repos using a subcommand:

list (ls): List information about the git repos.

create (mk): Add a git repo.

clone (cp): Copy git repos to new identifiers.

update (up): Modify git repo fields.

delete (rm): Delete git repos.

-i, --ids GITREPOS A comma-separated list of git repos to query or modify.

-a, --all Interact with all git repos (default for list).

certs {list,ls, create,mk, clone,cp, update,up, delete,rm, assign}
Manipulate certificate sources using a subcommand:

list (ls): List information about the certificate sources.

create (mk): Add a certificate source.

clone (cp): Copy certificate sources to new identifiers.

update (up): Modify certificate source fields.

delete (rm): Delete certificate sources.

assign: Assign the certificate sources to nodes, and create the certificates.

-i, --ids CERTS A comma-separated list of certificate sources to query or modify.

-a, --all Interact with all certificate sources (default for list).

hosts [--show-uids] [-i HOSTNAMES | -a] {list,ls, create,mk, clone,cp, update,up, delete,rm}
Manipulate hostname information for DNS, DHCP services using a subcommand:

list (ls): List information about the hostname.

create (mk): Add a hostname.

clone (cp): Copy hostnames to new identifiers.

update (up): Modify hostname fields.

delete (rm): Delete hostnames.

--show-uids Do not try to make the output more human readable.

-i, --ids HOSTNAMES A comma-separated list of hostnames to query or modify.

-a, --all Interact with all hostnames (default for list).

76 Chapter 4. Administration

ICE ClusterWare Documentation, Release 12.4.0

nets {list,ls, create,mk, clone,cp, update,up, replace,re, delete,rm}
Manipulate available networks using a subcommand:

list (ls): List information about networks.

create (mk): Add a network.

clone (cp): Copy network to new identifiers.

update (up): Modify network fields.

delete (rm): Delete network(s).

-i, --ids NETWORKS A comma-separated list of networks to query or modify.

-a, --all Interact with all networks (default for list).

providers {list,ls, create,mk, clone,cp, update,up, replace,re, delete,rm, resources, alloc, release, attach}
Manipulate available providers using a subcommand:

list (ls): List information about providers.

create (mk): Add a provider.

clone (cp): Copy providers to new identifiers.

update (up): Modify provider fields.

delete (rm): Delete provider(s).

resources: Show available resources, including unattached allocated systems.

alloc: Allocate machines according to the configuration.

release: Release machines according to the configuration.

attach: Attach existing machines to ClusterWare nodes.

-i, --ids PROVIDERS A comma-separated list of providers to query or modify.

-a, --all Interact with all providers (default for list).

EXAMPLES
scyld-clusterctl heads --help

Show the available subcommands: list (ls), clean, service, delete (rm).

scyld-clusterctl heads clean --help

Show the resources that can be cleaned: --all, --files, --heads, --database, --dry-run.

scyld-clusterctl heads service

Display the names of all ClusterWare system services and their states for a solo head node cluster.

scyld-clusterctl heads --all service

Display the names of all ClusterWare system services and their states for all head nodes.

scyld-clusterctl heads -i head02 service

Display the names of all ClusterWare system services and their states for head node head02.

scyld-clusterctl heads service --help

Show all the available actions on services: --start, --stop, --restart, --enable, --disable.

scyld-clusterctl heads --all clean --all

Clean everything on all head nodes.

4.9. Manage Cluster 77

ICE ClusterWare Documentation, Release 12.4.0

scyld-clusterctl pools --help

Show the available subcommands: list (ls), create (mk), clone (cp), update (up), delete
(rm)

scyld-clusterctl pools create name=infiniband_nodes pattern=ib{} first_index=0
scyld-nodectl -i n[64-127] update naming_pool=infiniband_nodes

Create a node name group "infiniband_nodes" for nodes named "ibX", beginning with "ib0", and associate
those names with nodes n64 to n127.

scyld-clusterctl nets create first_ip=10.1.1.100 mask_bits=24 ip_count=100 gateway_ip=10.
1.1.10 router_ip=10.1.1.1

Create a network that includes 100 IP addresses, 10.1.1.100 to 10.1.1.199, with a network mask of 24 bits.
The network mask does not have to align with the first_ip field, nodes are numbered starting at the
first_ip. The network gateway and router are optional, but are explicitly given in this example.

RETURN VALUES
Upon successful completion, scyld-clusterctl returns 0. On failure, an error message is printed to stderr and scyld-
clusterctl returns 1.

4.9.3 scyld-nssctl
NAME
scyld-nssctl -- Manage the scyld-nss service.

USAGE
scyld-nssctl

[-h] [-v] [start] [stop], [status]

DESCRIPTION
A basic tool to start, stop, or show the status of the scyld-nss functionality without affecting the systemd status. The
'start' and 'stop' actions must be executed by user root.

OPTIONAL ARGUMENTS:

-h, --help Print usage message and exit. Ignore trailing args, parse and ignore preceding
args.

-v Increase verbosity.

start
Insert scyld in the /etc/nsswitch.conf hosts line to enable (or reenable) scyld-nss functionality.

stop
Disable scyld-nss functionality by removing scyld in the /etc/nsswitch.conf hosts line.

status
Display the current status of scyld-nss functionality. (The default if no argument is supplied.)

EXAMPLES
scyld-nssctl

Display the current state of scyld-nss.

scyld-nssctl status
Display the current state of scyld-nss.

scyld-nssctl stop
Disable scyld-nss functionality.

78 Chapter 4. Administration

ICE ClusterWare Documentation, Release 12.4.0

scyld-nssctl start
Enable scyld-nss functionality.

RETURN VALUES
Upon successful completion, scyld-nssctl returns 0. On failure, an error message is printed to stderr and scyld-nssctl
returns nonzero.

4.9.4 IP Forwarding Issues
If IP forwarding is desired and is not working, then search for the line containing "net.ipv4.ip_forward":

grep net.ipv4.ip_forward /etc/sysctl.conf
grep net.ipv4.ip_forward /etc/sysctl.d/*

If that line exists and the assigned value is set to zero, then IP forwarding is disabled.

See Changing IP Addresses for details.

4.9.5 managedb
NAME
managedb -- Directly manipulate the database.

USAGE
managedb

[-h] [-v] [-q] [[-c | --config] CONFIG] [--print-options] [--as-ini] {join IP,
leave, eject IP, clear, update, recover, maintain, save ARCHIVE, load ARCHIVE, merge
ARCHIVE}

DESCRIPTION
This is a low-level tool that directly manipulates the database, generally only executed by other scyld-* tools.

The tool resides in /opt/scyld/clusterware/bin/managedb and must be executed by user root.

ACTIONS
join IP

Join this head node (referenced by IP address) to an existing cluster.

--purge Entirely delete the exiting database(s).

leave
Remove this head node from the cluster.

eject IP
Remove the specified head node IP address from the cluster.

clear
Reset the data back to a fresh, empty state.

--reinit Reinitialize the database server.

--purge Entirely delete the exiting database(s).

update
Update the internal database format.

recover
Attempt to recover the local database.

4.9. Manage Cluster 79

ICE ClusterWare Documentation, Release 12.4.0

maintain
Perform a maintenance tasks.

--compact Force a compaction, regardless of current size.

--defrag Shrink the database after compacting.

save ARCHIVE
Save the database and optionally the various cluster files to an ARCHIVE file or directory. Default is to save only
the database, i.e., no other files.

--with-boots Include boot files.

--with-images Include root file system images.

--with-isos Include ISO images uploaded for kickstarting.

--with-gits Include git archives.

--with-all Include all files (noted above).

--format FMT
Select a file format: zip (default), dir, tar

load ARCHIVE
Load the database from an ARCHIVE file or directory.

--without-boots Exclude boot files.

--without-images Exclude root file system images.

--without-isos Exclude ISO images uploaded for kickstarting.

--without-gits Exclude git archives.

--without-all Exclude all files, i.e., only import the database.

--format FMT
Select a file format: zip (default), dir, tar

merge ARCHIVE
Merge the contents of an ARCHIVE file or directory into the database.

--without-boots Exclude boot files.

--without-images Exclude root file system images.

--without-isos Exclude ISO images uploaded for kickstarting.

--without-all Exclude all files, i.e., only import the database.

--format FMT
Select a file format: zip (default), dir, tar

OPTIONAL ARGUMENTS
-h, --help Print usage message and exit. Ignore trailing args, parse and ignore preceding

args.

-v, --verbose Increase verbosity.

-q, --quiet Decrease verbosity.

-c, --config CONFIG Specify a client configuration file CONFIG.

--print-options Print all backend options, then exit.

--as-ini Use ini format when printing options.

80 Chapter 4. Administration

ICE ClusterWare Documentation, Release 12.4.0

EXAMPLES
(Reminder: managedb resides in /opt/scyld/clusterware/installer/managedb)

sudo managedb leave

Detach the current head node from the cluster.

sudo managedb eject 10.54.0.2

Eject head node at IP address 10.54.0.2 from the cluster.

RETURN VALUES
Upon successful completion, managedb returns 0. On failure, an error message is printed to stderr and managedb
returns 1.

4.9.6 ICE ClusterWare Log Files
The /var/log/clusterware/ folder contains several log files that may help diagnose problems. Additionally, the
ICE ClusterWare™ database service may have useful information in its logs.

For etcd, see /var/log/clusterware/etcd.log.

On a typical head node the /var/log/clusterware/ folder contains api_access_log and api_error_log files.
These are the Apache logs for the service providing the REST API. The log level available in this file is controlled
by the Pyramid logging configuration in the /opt/scyld/clusterware/conf/pyramid.ini file. The Pyramid
project documentation contains details of the pertinent variables https://docs.pylonsproject.org/projects/pyramid/en/
latest/narr/logging.html

A selection of log statements from the api_error_log are also logged to the ClusterWare database and then copied
to the logging folder on each head node. A separate log file is created for each head node and is named based on the
head node UID, i.e. head_293aafd3f635448e9aaa76fc998ebc0c.log. This should allow a cluster administrator
to diagnose many problems without needing to contact every head node individually. The log level for this file is
controlled by the logging.level variable in each head node's /opt/scyld/clusterware/conf/base.ini file. The
default log level of WARNING should be useful but not overly verbose. The options from most terse to most verbose
are AUDIT, ERROR, WARNING, INFO, DEBUG.

The various /var/log/clusterware/* logfiles are periodically rotated, as directed by the /etc/logrotate.d/
clusterware, /etc/logrotate.d/clusterware-dnsmasq, and /etc/logrotate.d/clusterware-iscdhcp
configuration files that distributed distributed in the clusterware, clusterware-dnsmasq, and clusterware-iscdhcp RPMs,
respectively.

ò Note

If the local cluster administrator modifies the /etc/logrotate.d/clusterware file, then a subsequent update of
clusterware RPM will install a new version as /etc/logrotate.d/clusterware.rpmnew. The cluster admin-
istrator should merge this clusterware.rpmnew into the local customized /etc/logrotate.d/clusterware.
Similar treatment of clusterware-dnsmasq and clusterware-iscdhcp is advised.

4.9.7 Creating Diagnostic Test Images
In uncommon situations a cluster administrator may wish to execute a self-contained diagnostic program as a compute
node image. "Self-contained" means the diagnostic program itself functions as a kernel and does not need an initrd.

An example is the memtest86+ memory diagnostic, which can be downloaded from www.memtest.org:

4.9. Manage Cluster 81

https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/logging.html
https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/logging.html

ICE ClusterWare Documentation, Release 12.4.0

Download the latest compressed Linux 64-bit ISO: mt86plus_6.01_64.iso.zip

Uncompress the downloaded file to expose the ISO:
unzip mt86plus_6.01_64.iso.zip

Mount the ISO
sudo mkdir -p /mnt/mt86plus_6.01_64
sudo mount mt86plus_6.01_64.iso /mnt/mt86plus_6.01_64 -o loop

Create a new boot configuration that consists of just the efi binary:
scyld-bootctl create name=Memtest_6.01_Boot kernel=@/mnt/mt86plus_6.01_64/EFI/BOOT/
→˓bootx64.efi

Configure the desired node (e.g., n123) to execute that new boot configuration:
scyld-nodectl -i n123 set _boot_config=Memtest_6.01_Boot

Ensure that you have a method to view serial output from that node.
For example, if serial output for node n123 uses ttyS1:
scyld-bootctl -i Memtest_6.01_Boot update cmdline="console=ttyS1,115200"

And then reboot that node.
scyld-nodectl -i n123 reboot

ò Note

memtest86+ version 6.01 works for both legacy and uefi PXE booting.

4.9.8 scyld-sysinfo
NAME
scyld-sysinfo -- Capture the system state information.

USAGE
scyld-sysinfo

[-h] [-V] [--no-tar] [--no-save BLACKLIST] [--up | -i NODES] [-d DIR_SUBSTR] [-m
MESSAGE]

DESCRIPTION
The tool works best when executed by a cluster administrator who is either user root or a user with sudo rights. The
executing user must have write access to the current working directory.

The tool captures elements of the current system state into a subdirectory of the current working directory with the name
sysinfo-$(hostname)-YY-MM-DD (using a 2-digit Year-Month-Day). This "capture" subdirectory is compressed by
default into a gzip'ed tarball; alternatively, the optional --no-tar argument skips that compression and allows the
administrator to explore the "capture" subdirectory to view exactly what information the tool has captured.

The administrator can employ a blacklist file containing a list of files and directories to not capture, passing this blacklist
path to the tool with the no-save argument. The administrator can also use --no-tar and manually delete captured
files and subdirectories within sysinfo-$(hostname)-YY-MM-DD, then manually compress the final captured infor-
mation for archival or for sending the file to others for examination.

The tool also optionally captures sysinfo state for compute nodes, for either all up nodes or a specific node or list of
nodes.

82 Chapter 4. Administration

ICE ClusterWare Documentation, Release 12.4.0

If the optional -d DIR_SUBSTR string is specified, then the directory name contains that alphanumeric string, e.g.,
sysinfo-DIR_SUBSTR-$(hostname)-YY-MM-DD.tar.gz.

If -m MESSAGE is specified, then the MESSAGE string is retained as the contents of the file DESCRIPTION at the top of
the output directory. If -m MESSAGE is not specified, then the script queries the user for optional multi-line input that
is retained as file DESCRIPTION in the output directory.

In the rare event that the tool aborts while capturing data, note that a partial capture is still available as the subdirectory
sysinfo-$(hostname)-YY-MM-DD in the current working directory.

OPTIONAL ARGUMENTS:

-h, --help Print usage message and exit. Ignore trailing args, parse and ignore preceding
args.

-V Print the scyld-sysinfo version and ClusterWare package versions.

--no-save BLACKLIST Do not save files/directories listed in file BLACKLIST.

--no-tar Leave the output as a subdirectory, not as a gzip'ed tarball.

--up Optionally capture the state of all up compute nodes.

-i NODES Optionally capture the state of a specific node or nodes.

-d DIR_SUBSTR Insert the alphanumeric string DIR_SUBSTR into the output directory/tarball
name.

-d MESSAGE If specified, then the MESSAGE string is retained as the contents of file
DESCRIPTION at the top of the output directory.

EXAMPLES
scyld-sysinfo

Capture the state of the current node into a gzip'ed tarball, executed as user root.

scyld-sysinfo --no-tar

Capture the state of the current node into a human-readable subdirectory of the current working directory.

scyld-sysinfo -I -d UMich

The output directory name for the head node "headnode1" is "sysinfo-UMich-headnode1-YY-MM-DD".

scyld-sysinfo -m "dhcpd fails with network error"

The output directory contains the file DESCRIPTION that contains the specified string.

scyld-sysinfo --up

Capture the state of the current head node and all the up compute nodes.

scyld-sysinfo -i n0-10

Capture the state of the current head node and compute nodes n0 through n10.

scyld-sysinfo -i n0,n2,n100

Capture the state of the current head node and compute nodes n0, n2, and n100.

RETURN VALUES
Upon successful completion, scyld-sysinfo returns 0. On failure, an error message is printed to stderr and scyld-
sysinfo returns nonzero.

4.9. Manage Cluster 83

ICE ClusterWare Documentation, Release 12.4.0

4.10 Create Login Nodes
In many cluster environments, especially in traditional HPC environments, end users require access to a login node to
interface with the system. The end user can log into that node to submit jobs, check on job status, and examine the
results of completed jobs. After a complex computation, the results can be quite large and users may prefer to visualize
the results on the cluster rather than downloading the content to visualize it on their local machine. Some clusters
provide individual login nodes to specific end users whereas others allocate larger shared systems accessible to all end
users, or use a mixture of both approaches.

Login nodes also provide end users with access to their home directory. The home directory is usually provided on a
shared file system so that the same files and paths are available on the compute nodes during jobs. On a small cluster
that shared file system may be provided by a simple NFS mount, but in more complex environments a more performant
and resilient parallel file system (WekaIO, GPFS, etc.) is preferable. Configuring the shared file system is beyond the
scope of this document. For NFS sharing, consult the relevant documentation for your chosen operating system.

Access control to login nodes is highly cluster-specific and also not covered in this document. The usual approaches
consist of installing an authentication client into the login node image and/or configuring PAM within the image to
utilize a site-wide identity provider. In addition to providing a single point of control for who can submit jobs on the
cluster, that identity provider is useful to keep UIDs and GIDs consistent across the cluster.

The following files referenced in this example can be found in /opt/scyld/clusterware-tools/examples.

• deploy/virsh.sh

Files in the deploy/ subdirectory are example scripts to install packages into images or locally installed nodes.
These scripts assume that the head node has access to the internet. You may need to make modifications to the
scripts to install from non-standard sources.

• partitions.butane

The partitions.butane file provides a Butane (https://coreos.github.io/butane) configuration to minimally
partition a local /dev/sda drive for deployment. That script will likely require modifications to match the
hardware used for deployment.

• wipe-disks.sh

The wipe-disks.sh script can be used to entirely remove all partitions from a node; however, extreme caution
should be used and the script must be modified before it is run to prevent accidental execution.

The ICE ClusterWare™ platform implements “providers” plugins to help cluster administrators allocate and manage
login nodes. The following example uses the simplest provider plugin, virsh, to mark a ClusterWare node as a hyper-
visor, install the appropriate libvirt packages, allocate a virtual login node on that hypervisor, and deploy the newly
created login image to the virtual machine’s local disk.

1. Create an image that includes the necessary libvirt packages.

1. Clone the DefaultImage to a new name:

scyld-imgctl -iDefaultImage clone name=HypervisorImage

� Tip

Although not necessary, defining the hypervisor node with a memorable name will make organizing the
cluster easier and also provide a place to set several variables necessary for persistent image deployment.

2. Create a boot configuration that uses the new image:

scyld-bootctl -iDefaultBoot clone name=HypervisorBoot image=HypervisorImage

84 Chapter 4. Administration

https://coreos.github.io/butane

ICE ClusterWare Documentation, Release 12.4.0

3. Deploy virsh packages into the new image:

scyld-modimg -iHypervisorImage --deploy deploy/virsh.sh \
--discard-on-error --upload --overwrite

2. Configure the attributes and naming pool for the login node.

1. Create an attribute group and include attributes used for deploying the "HypervisorBoot" as a persistent
installation on the local disk:

scyld-attribctl create name=hypers
scyld-attribctl -ihypers set _boot_config=HypervisorBoot \

_ignition=partitions.butane _bootloader=grub \
_boot_style=disked _disk_root=LABEL=root

2. Create the “hypers” naming pool and define a node using it:

scyld-clusterctl pools create name=hypers pattern=hyper{} group=hypers

3. Create the hyper0 hypervisor node:

scyld-nodectl create mac=00:28:50:34:0f:ce \
power_uri=ipmi:///root:password@10.110.10.35 naming_pool=hypers

4. Deploy that image to hyper0 by rebooting hyper0 and forcing a PXE Boot to start deploying the image:

scyld-nodectl -ihyper0 reboot then power setnext pxe then waitfor up

This command may take several minutes depending on how long it takes hyper0 to boot. During this time, the
local disk is partitioned, the image is unpacked onto those partitions, grub is installed, and then hyper0 reboots
to the local disk.

5. Once hyper0 boots, define a provider instance associated with that node and report the resources on that hyper-
visor.

1. Create a provider pointing at hyper0:

scyld-clusterctl providers create name=hyper0 type=virsh \
spec=’{“server”: “hyper0”}’

2. Report the resources to confirm the connection works:

scyld-clusterctl providers -ihyper0 resources

6. Create a login node image.

1. Clone the DefaultImage:

scyld-imgctl -iDefaultImage clone name=LoginImage

2. Create a boot configuration that uses the new image:

scyld-bootctl -iDefaultBoot clone name=LoginBoot image=LoginImage

4.10. Create Login Nodes 85

ICE ClusterWare Documentation, Release 12.4.0

� Tip

Although this example only clones the DefaultImage, additional libraries and applications may make
sense depending on the cluster hardware and expected workloads. This is also the time to configure the
image to work with a site-wide identity provider.

7. Define attributes and naming for the login node(s).

1. Create an attribute group and naming pool for login nodes:

scyld-attribctl create name=logins
scyld-attribctl -ilogins set _boot_config=LoginBoot

2. Create the logins naming pool:

scyld-clusterctl pools create name=logins pattern=login{:02d} group=logins

8. Create a virtual machine using the previously defined provider instance.

1. Allocate a virtual machine (VM) and attach it to the logins naming pool:

scyld-clusterctl providers -ihyper0 alloc --attach logins \
--cpus 4 --memory 8G --disk 20G

2. Wait for the new login node to boot:

scyld-nodectl -ilogin00 waitfor up

The created virtual machine can be accessed just like any other ClusterWare node.

4.11 Update and Upgrade

4.11.1 Updating ICE ClusterWare Software
From time to time, updates and add-ons to the ICE ClusterWare™ platform are released. Customers on active sup-
port plans can access these updates on the Penguin Computing website. Visit https://www.penguinsolutions.com/
computing/support/technical-support/ for details. That website offers answers to common technical questions and pro-
vides access to application notes, software updates, and product documentation.

ClusterWare release versions follow the traditional three dot-separated numbers format: <major>.<minor>.<patch>.
Updating to a newer major release should be done with care. Updating ClusterWare 11 to ClusterWare 12 requires an
awareness of specific issues that are discussed later in this section.

The Release Notes contains brief notes about the latest release, and the Changelog provides a history of significant
changes for each software release and a list of Known Issues And Workarounds.

4.11.1.1 Updating head nodes

The scyld-install tool is used to update ClusterWare software on a head node, just as it was used to perform the
initial installation. This tool first determines if a newer clusterware-installer package is available, and if so will update
clusterware-installer and then restart scyld-install.

86 Chapter 4. Administration

https://www.penguinsolutions.com/computing/support/technical-support/
https://www.penguinsolutions.com/computing/support/technical-support/

ICE ClusterWare Documentation, Release 12.4.0

s Important

A simple yum update will not update ClusterWare packages on a head node, as the scyld-install tool has
disabled /etc/yum.repos.d/clusterware.repo in order to prevent yum update from inadvertently updat-
ing the ClusterWare software. Instead, Penguin Computing strongly recommends using the scyld-install tool
to perform updates of the basic ClusterWare packages that were originally installed by scyld-install. To
install or update any optional ClusterWare packages described in Additional Software, you must use sudo yum
<install-or-update>--enablerepo=scyld* <packages>.

s Important

scyld-install uses the yum command to access the ClusterWare software and potentially various other repos-
itories (for example, Red Hat RHEL or Rocky) that by default normally reside on Internet websites. However, if
the head node(s) do not have Internet access, then the required repositories must reside on local storage that is
accessible by the head node(s). See Creating Local Repositories without Internet.

ò Note

Executing scyld-install with no arguments presupposes that the ClusterWare platform is not yet installed. If
the ClusterWare platform is currently installed, then the tool asks for positive confirmation that the user does intend
to update existing software. You can avoid this interaction by providing the -u` or --update arg. That same degree
of caution occurs if executing scyld-install --update on a server that does not currently have the ClusterWare
platform already installed: the tool asks for positive confirmation that the user does intend to install the ClusterWare
platform as a fresh install.

s Important

Updating from 12.0.1 and earlier to 12.1.0 requires reconfiguration of the Influx/Telegraf monitoring stack.
The following command can be used to update the necessary config files: /opt/scyld/clusterware/bin/
influx_grafana_setup --tele-env, followed by systemctl restart telegraf. All data will persist
through the upgrade.

The scyld-install tool only updates basic ClusterWare head node software that was previously installed by the tool,
plus any other dependency packages. After the ClusterWare software is updated, you can execute yum check-update
--enablerepo=scyld* | grep scyld to view the optional ClusterWare packages that were previously in-
stalled using yum install --enablerepo=scyld*, and then use sudo yum update --enablerepo=scyld*
<PACKAGES> to update (or not) as appropriate for your local head node.

You can also execute yum check-update to view the non-ClusterWare installed packages that have available updates,
and then use sudo yum update <PACKAGES> to selectively update (or not) as appropriate for your local head node.

Alternatively, scyld-install --clear-all empties the database and clears the current installation. Just like during
an initial installation, after a --clear-all the database should be primed with a cluster configuration. The cluster
configuration can be loaded at the same time as the --clear-all using the --config /path/to/cluster-conf
argument. This will use the scyld-cluster-conf tool to load the cluster configuration's initial declaration of private
cluster interface, max number of nodes, starting IP address, and MAC address(es), as described in Execute the ICE
ClusterWare Install Script. See scyld-cluster-conf for more details about the scyld-cluster-conf tool.

Similar to using scyld-install on a non-ClusterWare server to perform a fresh install or to join another head node on

4.11. Update and Upgrade 87

ICE ClusterWare Documentation, Release 12.4.0

an existing cluster, executing scyld-install --clear-all --config /path/to/cluster-conf> will invoke
the scyld-add-boot-config script to create a new default boot image.

4.11.1.2 Updating compute nodes

A compute node can be dynamically updated using a simple yum update, which will use the local /etc/yum.repos.
d/*repo file(s). If the compute node is executing a ClusterWare created image, then these changes (and any other
changes) can be made persistent across reboots using scyld-modimg and performing the yum install and yum
update operations inside the chroot. See Modifying Images for details.

4.11.1.3 Updating ClusterWare 11 to ClusterWare 12

ClusterWare version 11 updates cleanly to version 12, albeit retaining the CW11-built boot configurations and images.

s Important

A cluster using the ClusterWare Couchbase database must first switch that database to etcd.

s Important

You must examine /etc/yum.repos.d/clusterware.repo and potentially edit that file to reference the Cluster-
Ware version 12 repos. If the baseurl= contains the string clusterware/11/, then change 11 to 12. If the gpgkey
contains RPM-GPG-KEY-PenguinComputing, then change PenguinComputing to scyld-clusterware.

CW11-based compute nodes are compatible with CW12 parent head nodes. However, to make use of the full additional
functionality of CW12, after updating the CW11 head node(s) you should also update CW11 images to CW12 with at
least the newest version of clusterware-node. See Updating compute nodes, above.

4.11.2 Updating Firmware
A cluster contains hardware components that employ writeable firmware, such as the BIOS on a server, device controller
firmware, and "smart switch" firmware. The management of cluster firmware and the identification of a need to update
that firmware is beyond the scope of this document. Contact Penguin Computing Support for guidance.

4.11.3 Updating Base Distribution Software
The decision about if and when to update RHEL-clone base distribution software is complex and needs to be made by
a local cluster administrator, ranging from never updating anything on the cluster to updating frequently.

Production clusters in constant use commonly have regular update schedules, typically ranging from weekly to quarterly.
The cluster administrator should track the RHEL-clone release notifications as well as the ICE ClusterWare™ release
notifications to determine which security fixes, bug fixes, and feature enhancements merit disrupting normal cluster
operations in order to perform an update or a group of updates.

Base distribution software updates on a schedule managed by the distributor (e.g., Red Hat). RHEL-clone versioning
consists of two dot-separated numbers that define a major release and minor release. See Supported Distributions and
Features for details about what the ClusterWare platform supports on head nodes and compute nodes.

Various package releases can occur for a given major.minor release, and those patch releases are generally compatible
with other software in the same major.minor release, which means a node can generally update patch release packages
as desired. However, a kernel or device driver update may potentially require relinking of 3rd-party software. These
patch releases typically include security fixes, bug fixes, and backward-compatible feature enhancements. See the
distributors' documentation for details.

88 Chapter 4. Administration

ICE ClusterWare Documentation, Release 12.4.0

A minor release update generally entails a larger number of packages, and those packages need to be updated as a group
in order to guarantee interoperability. Before updating to a new minor release the cluster administrator should confirm
that the 3rd-party software intended to be in use is compatible with that particular major.minor base distribution. A
minor release commonly includes a new kernel with substantial changes, and that commonly requires 3rd-party device
software to be relinked. See the distributors' documentation for details.

A major release update always entails a large number of packages and usually changes of some degree to user and
application interfaces. Commonly there is no simple updating from one major release to another, and an administra-
tor commonly needs to perform a fresh install of the new distribution. Before updating to a new major release the
cluster administrator should confirm that the intended 3rd-party software is supported by that major release. See the
distributors' documentation for details.

s Important

The ClusterWare build version (e.g., el7, el8, or el9, combined with x86_64 or aarch64) must match the base
distribution's major release and hardware platform.

4.12 Backup and Restore

4.12.1 Backup and Restore of ICE ClusterWare Software
The scyld-install script can also be used to back up and restore all cluster-specific data, including the cluster
configuration, images, and node details. To back up the cluster:

scyld-install --save /path/to/backup.zip

By default the produced ZIP archive can be quite large, as it will contain all boot files and root file system images. If
these files are archived by other means, e.g. as part of a backup solution for cluster-wide shared storage, then system
administrators may want to include the --without-files option. The resulting ZIP file will contain only the ICE
ClusterWare™ database. Be aware that this option should only be used if those files are separately archived or when
providing a copy of your ClusterWare database to Penguin Computing technical support.

A previously produced archive can also be loaded by the scyld-install script:

scyld-install --load /path/to/backup.zip

s Important

Loading a ZIP backup will erase all data and all images and replace them with the corresponding contents from the
archive.

During save and load, the scyld-install script is actually using the managedb tool that provides additional options
and capabilities. For details see managedb.

4.12.2 Backup and Restore of the Database
Cluster administrators may wish to capture the database state in the event that a database restore operation is desired in
the future. This can be done by manually executing the /opt/scyld/clusterware/bin/take-snapshot tool, or
more preferably by setting up a cronjob to periodically execute that tool.

For details see take-snapshot.

4.12. Backup and Restore 89

ICE ClusterWare Documentation, Release 12.4.0

4.12.2.1 take-snapshot

NAME
take-snapshot -- Perform a database backup

USAGE
take-snapshot

DESCRIPTION
This is a low-level tool that performs a database backup, typically executed periodically by cron. The tool uses optional
"backups" configuration settings found in /opt/scyld/clusterware/conf/base.ini.

The tool resides in /opt/scyld/clusterware/bin/take-snapshot and must be executed by user root.

The base.ini optional settings and examples:
backups.user = CWADMIN

This setting optionally specifies the user name CWADMIN of a ClusterWare administrator. If unspecified, then
the default is user root, although in that case root must be previously declared (e.g., via scyld-adminctl
create name=root) as an ClusterWare administrator.

backups.path = ~CWADMIN/.scyldcw/database-backups
This setting optionally specifies the path to the directory into which the backups and associated files reside. If
unspecified, then the default is ~CWADMIN/.scyldcw/database-backups for the CWADMIN user in effect,
whether explicitly specified or whether using the default root. For example, if backups.user is unspecified, then
CWADMIN defaults to root and the default backups.path defaults to ~root/.scyldcw/database-backups.
The take-snapshot tool creates the directory with owner CWADMIN.

Within the backups directory there is a subdirectory files that contains the various raw content, kernel, and
initramfs files from the database, a database-backups.log logfile, and one or more snap-<timestamp>
directories of database snapshots, each created by an execution of the take-snapshot tool. Within each of these
snapshot directories is a managedb-generated zipfile of files other than the various raw image files in the files
subdirectory, and symlinks with "pretty" names such as "DefaultBoot.kernel" and "DefaultImage.content" that
point to specific raw files in the files subdirectory.

backups.retention = 1h/24h,1d/7d,1w/4w,4w/1040w
This setting optionally specifies the four retention tiers, which are comma-separated block and span time values
separated by a '/'. A time value is a nonzero positive integer with a single letter suffix of h for hours, d for days,
or w for weeks.

The above values are the default values for the tiers and specify:

Tier1: For the most recent 24 hours ("24h"), retain a max of one snapshot per hour (
→˓"1h").
Tier2: Then for the previous 7 days ("7d") prior to that Tier1 24 hour span,

retain a max of one snapshot per day ("1d").
Tier3: Then for the previous 4 weeks ("4w") prior to that Tier2 7 day span,

retain a max of one snapshot per week ("1w").
Tier4: Then for the previous 1040 weeks ("1040w", or about 20 years), prior

to that Tier3 4 week span, retain a max of one snapshot per 4 weeks ("4w").

Any snapshots older than the Tier4 "span" are simply discarded.

backups.clean = 14d
This setting optionally specifies a interval between scans of the snap-<timestamp> directories to determine
which of the raw files in the files subdirectory, if any, are no longer referenced by any snap-<timestamp>.
If unspecified, then the default is once every 14 days.

90 Chapter 4. Administration

ICE ClusterWare Documentation, Release 12.4.0

EXAMPLES
(Note that take-snapshot resides in /opt/scyld/clusterware/bin/)

sudo take-snapshot

Manually perform a single database backup.

sudo cat /var/spool/cron/root

A sample crontab to execute the tool once an hour at five minutes past the hour:

SHELL=/bin/bash
PATH=/usr/bin:/usr/sbin:/usr/local/bin:/usr/local/sbin
MAILTO=root@localhost

05 * * * * /opt/scyld/clusterware/bin/take-snapshot

RETURN VALUES
Upon successful completion, take-snapshot returns 0. On failure, an error message is printed to stderr and take-
snapshot returns 1.

4.13 Interacting with Compute Nodes
The primary tool for interacting with ICE ClusterWare™ nodes from the command line is scyld-nodectl. This tool
is how an administrator would add a node, set or check configuration details of a node, see the basic node hardware,
see basic status, cause a node to join or leave attribute groups, reboot or powerdown a node, or execute commands on
the node.

In this section we will show a number of examples and discuss what information an administrator can both get and set
through the scyld-nodectl tool, as well as reference other resources for further details.

Nodes are named by default in the form of nX, where X is a numeric zero-based index. More complicated clusters may
benefit from more flexible naming schemes. See Node Names and Pools for details.

4.13.1 scyld-nodectl
NAME
scyld-nodectl -- Query and modify nodes for the cluster.

USAGE
scyld-nodectl

[-h] [-v] [-q] [[-c | --config] CONFIG] [--base-url URL] [[-u | --user] USER[:PASSWD]]
[--human | --json | --csv | --table] [--pretty | --no-pretty] [--show-uids] [-a |
-i NODES] | --up | --down | --booting] {clear, clone,cp, create,mk, delete,rm, exec,
hardware, join, leave, list,ls, ping, power, reboot, replace,re, scp, script, set, shutdown,
sol, ssh, status, update,up, waitfor}

OPTIONAL ARGUMENTS
-h, --help Print usage message and exit. Ignore trailing args, parse and ignore preceding

args.

-v, --verbose Increase verbosity.

-q, --quiet Decrease verbosity.

-c, --config CONFIG Specify a client configuration file CONFIG.

4.13. Interacting with Compute Nodes 91

ICE ClusterWare Documentation, Release 12.4.0

--show-uids Do not try to make the output more human readable.

-a, --all Interact with all nodes (default for list).

-i, --ids NODES A comma-separated list of nodes or an admin-defined group of nodes to act upon.

--up Interact with all "up" nodes.

--down Interact with all "down" nodes.

--booting Interact with all "booting" nodes.

--selector TEXT, -s TEXT Node selection string.

ARGUMENTS TO OVERRIDE BASIC CONFIGURATION DETAILS
--base-url URL Specify the base URL of the ClusterWare REST API.

-u, --user USER[:PASSWD]
Masquerade as user USER with optional colon-separated password PASSWD.

FORMATTING ARGUMENTS
--human Format the output for readability (default).

--json Format the output as JSON.

--csv Format the output as CSV.

--table Format the output as a table.

--pretty Indent JSON or XML output, and substitute human readable output for other for-
mats.

--no-pretty Opposite of --pretty.

--fields FIELDS Select individual fields in the result or error.

ACTIONS
clear [-a | --all | NAME ...]

Delete attribute name(s) and their value(s).

-a, --all Delete all attributes.

clone (cp) [--content JSON | INI_FILE] [NAME=VALUE ...]
Copy node with new NAME/VALUE identifier pairs.

--content JSON | INI_FILE
Overwrite fields in the cloned node.

create (mk) [--content JSON | INI_FILE] [NAME=VALUE ...]
Add a node, commonly by specifying its MAC address (e.g., mac=MACaddr, that assigns the next
available node number and associated IP address).

--content JSON | INI_FILE
Load this content into the database as a node.

delete (rm)
Delete node(s).

--release Release the machine back to the provider.

exec [--grouped] [--in-order] [--label] [--stdin IN] [--binary] [--stdout OUT] [--stderr ERR] CMD

92 Chapter 4. Administration

ICE ClusterWare Documentation, Release 12.4.0

Execute the CMD (double-quotes are optional) on node(s). The scyld-nodectl exec command
passes its current stdin, stdout, and stderr to the remote command, or uses the --stdin, --stdout,
and/or --stderr arguments to override the default(s) with a file.

When run via an ssh command (e.g. ssh cwhead scyld-nodectl --up exec uptime), that
stdin should be provided and closed with Ctrl-d, or ssh should be passed the -t argument to force tty
allocation. Otherwise the command will detect stdin is a pipe and wait for end-of-file.

Commands executed on multiple nodes will execute in parallel. The degree of fan-out can be con-
trolled through the ssh_runner.fanout configuration variable in base.ini. Because these com-
mands execute in parallel, their output may be interleaved or not in node index order. Override this
with grouped or --in-order arguments.

For sshpass functionality, see _remote_pass in the Reserved Attributes section of the ClusterWare
documentation.

--grouped Results are locally buffered and printed grouped by node.

--in-order Output is printed in node index order, implies --grouped.

--label Force output labeling, even if a single node is selected.

--stdin IN Provide @file or input string as stdin for the CMD.

--binary Treat CMD output as binary data.

--stdout OUT Provide a filename OUT for the CMD stdout output. Any {} in the filename
gets translated to the node name (see EXAMPLES).

--stderr ERR Provide a filename ERR for the CMD stderr output. Any {} in the file-
name gets translated to the node name (see EXAMPLES). An ERR value
consisting of the string STDOUT will merge stderr into stdout.

hardware
Show the "hardware" information subset of scyld-nodectl ls -L.

join GROUP ...
Append GROUP(S) to the node group lists.

leave [-a | --all | GROUP ...]
Remove GROUP(S) from the node group lists.

-a, --all Remove node(s) from all groups (other than the global default).

list (ls) [--long | --long-long | --raw]
Show information about nodes.

-l, --long Show a subset of all optional information for each node.

-L, --long-long Show all optional information for each node.

--raw Display the raw JSON content from the database.

ping [COUNT]
ping the specified node(s) with COUNT packets (default 1).

power {on | off | cycle | status | setnext BOOTDEV}
Display or control the node power state through the plugin defined by the node's power_uri, usually ipmi. The
options on, off, cycle, and status correspond to ipmitool actions.

power {on|off|cycle} [--force]
--force Perform the power control action regardless of _no_boot.

4.13. Interacting with Compute Nodes 93

ICE ClusterWare Documentation, Release 12.4.0

The option setnext specifies the boot device or method to use for the next node boot. BOOTDEV choices are
none, pxe, disk, and bios.

power setnext BOOTDEV
Boot device from: none, pxe, disk, bios

reboot [--soft | --hard] [--kexec] [--force] [--timeout SECS]
Reboot node(s) using either "soft" (using ssh) or "hard" (using ipmi) or kexec methods. If none is
specified, then the default behavior is to initially attempt a "soft" reboot; and if after a short delay
(default 5 seconds) the node does not appear to begin a reboot, then perform a "hard" power cycle.
Ignore the reboot if the node's _no_boot is set to true (or t, 1, yes, y) or if _busy is set to true (or t,
1, yes, y), unless an overriding --force argument is supplied.

--soft Reboot node(s) using ssh methods.

--hard Reboot node(s) using ipmi methods.

--kexec Boot directly into a new kernel without a full reboot which would include
Power On Self Test (POST) and hardware initialization. See man kexec
for details. This is implemented on a compute node using the ClusterWare
reboot-kexec tool which installs from the clusterware-node package.

--bootconfig BOOTCONFIG Kexec into a specific boot configuration.

--force Override the node's _no_reboot attribute value when set to 1.

--timeout SECS Wait a non-default SECS seconds between "soft" and "hard" methods.

scp
Copy files to or from node(s). See scyld-nodectl exec in EXAMPLES, below.

script SCRIPT
Execute the specified ClusterWare SCRIPT (distributed in the clusterware-node package) on the specified com-
pute node(s). The script name list (or ls) displays names of the available scripts, which generally execute auto-
matically at boot time to facilitate various node initializations and have limited usefulness for later execution by
a cluster administrator. However, the scripts fetch_hosts (re-download the list of head nodes) and update_keys
(update SSH keys) may be useful in rare circumstances for a booted node.

set [--content JSON | INI_FILE] [NAME=VALUE] ...
Set attribute value(s).

--content JSON | INI_FILE
Import the NAME/VALUE pairs from the file into the node attributes.

shutdown [--soft | --hard] [--timeout SECS] [--force]
Shutdown node(s) using either soft (using ssh) or hard (using ipmi) methods. If neither --soft nor
--hard is specified, then the default behavior is to first attempt a soft shutdown; if after a short delay
the node does not appear to begin a shutdown, then perform a hard power off.

--hard Shutdown node(s) using ipmi methods.

--soft Shutdown node(s) using ssh methods.

--timeout SECS Wait SECS seconds between "soft" and "hard" methods.

--force Perform the power control action regardless of _no_boot.

sol [--enable ID] [--steal]
Start a serial-over-lan connection using the local ipmitool.

--enable ID If SOL payload is disabled, then attempt to enable for ID and retry.

94 Chapter 4. Administration

ICE ClusterWare Documentation, Release 12.4.0

--steal If an SOL session is currently active for that node, then deactivate that ses-
sion and retry.

ssh [--pubkey FILE]
Create an SSH connection to the specified node as the user root. This is done using a local SSH
key that is temporarily copied to the compute node through the head node and removed after the
command completes. The user can provide their own public key, or one will be generated and stored
in ~/.scyldcw/tempauth.key.

--pubkey FILE Specify a file containing a public key to use for this connection.

status [--long] [--long-long] [--health | --aim | --no-aim] [--refresh] [--raw] [--counts]
Show node status.

--health Show status based on _health attribute.

--aim Show status based on _aim_status attribute.

--no-aim Opposite of --aim.

-l, --long Show a subset of all optional information for each node.

-L, --long-long Show all optional information for each node.

--raw Display the raw JSON content from the database.

--refresh Show basic node states, refreshing for any state change.

--counts Include node counts.

update (up) [--content JSON | INI_FILE] [NAME=VALUE] ...
Modify node NAME field(s) with new value(s).

--content JSON | INI_FILE
Overwrite this content into the database for a node.

waitfor [Options] COND

Complete when one or more of the specified nodes meet the condition COND, which is either an
expression or a '@'-prefixed file name. If no nodes are specified, then defaults to --all.

--failure COND Also complete if the failure condition becomes true.

--timeout SECS Complete after SECS seconds if condition(s) never become true.

--name NAME Use the currently defined COND state known as NAME, or define a new
COND and remember it as NAME.

--load Just save the state sets into the database.

--delete NAME Delete an existing state set NAME.

--show [NAME]
Show a list of all state sets, or optionally just the details of one.

--stream Stream back ongoing results instead of returning the first result and exiting.

--skip Do not use or print the initial node states.

--one-per Stream node state changes with one node per line.

--this-head Only return state changes handled by the current head.

EXAMPLES
scyld-nodectl list

4.13. Interacting with Compute Nodes 95

mailto:'@'-prefixed

ICE ClusterWare Documentation, Release 12.4.0

List all node names.

scyld-nodectl status

Shows the basic state of each node.

scyld-nodectl status

Shows the basic state of node n5.

scyld-nodectl -i n5 ls -L

Shows full information available for node n5.

scyld-nodectl -i %groupx ls -l

Shows an expanded information available for each node joined to the admin-defined group groupx.

scyld-nodectl create mac=00:25:90:0C:D9:3C

Add a new node to the end of the current list of nodes.

scyld-nodectl create mac=00:25:90:0C:D9:3C index=10

Add a new node beyond the end of the current list of nodes as node n10.

scyld-nodectl -i n3 update mac=40:25:88:0C:B9:2C

Replace the current MAC address for node n5 with a new MAC address.

scyld-nodectl -i n20 update power_uri=ipmi:///admin:passwd@10.2.255.37

Replace the current power_uri (defaults to "none") to an ipmitool authentication and BMC IP address.

scyld-nodectl -in2 ssh

Use ssh to open a shell on node n2.

scyld-nodectl -i n2 exec ls /var/log

Execute ls /var/log on node n2, directing stdout and stderr to scyld-nodectl's stdout and stderr,
respectively.

scyld-nodectl -i n2 exec --stdout /tmp/n2.var.log ls /var/log

Execute ls /var/log on node n2, directing stdout to the head node file /tmp/n2.var.log.

scyld-nodectl -i n[2-4] exec --stderr STDOUT --stdout /tmp/{}.var.log ls /var/log

Execute ls /var/log on nodes n2, n3, and n4, directing both stderr and stdout to the head node files
/tmp/n2.var.log, /tmp/n3.var.log, and /tmp/n4.var.log, respectively.

scyld-nodectl --up exec --stderr STDOUT --stdout /tmp/{}.var.log ls /var/log

Perform the same action as above, although this time for all the "up" nodes.

scyld-nodectl -in5 exec --stdout /tmp/n5-log.tar.gz tar -czf- /var/log

Execute tar -czf- /var/log on node n5, directing the stdout of the packed result into the head node
file /tmp/n5-log.tar.gz.

scyld-nodectl -in5 exec --stdin=@/tmp/n5-log.tar.gz tar -C /root -xzf-

Send the local file /tmp/n5-log.tar.gz as the stdin to node n5 as it executes tar -C /root -xzf- to unpack
the stdin contents at /root.

scyld-nodectl -in3 scp check-health.sh r:/opt/scyld/clusterware-node/bin/check-health.sh

Copy the local check-health.sh file to node n3 as file /opt/scyld/clusterware-node/bin/
check-health.sh.

96 Chapter 4. Administration

ICE ClusterWare Documentation, Release 12.4.0

scyld-nodectl -in3 scp check-health.sh r:/opt/scyld/clusterware-node/bin/

Copy the local check-health.sh file to node n3 directory /opt/scyld/clusterware-node/bin/. The
trailing / in the remote path is mandatory to differentiate copying a file vs. copying a directory.

scyld-nodectl -in3 scp r:/opt/scyld/clusterware-node/bin/check-health.sh /tmp/

Copy the remote n3 check-health.sh file to the head node's /tmp/ directory.

scyld-nodectl -in3 scp /opt/scyld/clusterware-tools/examples/ r:/tmp/

Copy the directory /opt/scyld/clusterware-tools/examples to node n3 directory /tmp/. The trail-
ing / in the remote path is mandatory to differentiate copying a file vs. copying a directory.

scyld-nodectl -i n4 reboot ; scyld-nodectl -i n4 waitfor 's[state] == "up"'

Reboot node n4, then wait until the node returns to the "up" state.

scyld-nodectl -i n4 reboot ; scyld-nodectl -i n4 waitfor up

Reboot node n4, then wait until the node returns to the "up" state. Another supported shorthand is the
conditional "down".

scyld-nodectl -i n0 waitfor @/opt/scyld/clusterware-tools/examples/node-states.ini

For node n0 establish a waitfor state condition described in that specified examples file, in which the state
condition is named status. If no -i <NODE(s) is specified, then defaults to --all.

scyld-nodectl waitfor --name status

For all nodes re-establish a waitfor state condition for the previously defined state named status. When the
condition is true for any node, write the state to stdout and exit.

scyld-nodectl waitfor --name status --stream

For all nodes re-establish a waitfor state condition for the previously defined state named status. When the
condition is true for any node, write the state change to stdout and continue executing.

scyld-nodectl -i n0 reboot then waitfor up then exec uname -r

Initiate a reboot of node n0, wait for the node to return to an "up" state, and then execute uname -r on the
node.

scyld-nodectl -i n0 ssh

Start a ssh session on node n0 as user root (by default) or whatever user is specified in the node's _re-
mote_user attribute.

RETURN VALUES
Upon successful completion, scyld-nodectl returns 0. On failure, an error message is printed to stderr and scyld-
nodectl returns 1.

4.14 Nodes Page
To display the Nodes page, click Nodes > Compute Nodes in the left navigation panel or, from the Overview page,
click the Manage Nodes link in the Nodes panel.

4.14. Nodes Page 97

ICE ClusterWare Documentation, Release 12.4.0

At the top of the Nodes page is a Node Filtering subpanel (see Node Filtering). Below that is a summary of the total
node count, the counts of "up" vs "down" nodes, and the counts of healthy vs. unhealthy nodes. These summary lines
are clickable links that overwrite the node selector to select just the nodes in that summary. For example, clicking "7
unhealthy" selects just the nodes currently reported as "unhealthy".

If you are using a job scheduler, such as Slurm, you can toggle the Sched switch to show scheduler status. For details
on installing job schedulers, see Job Schedulers. For details on configuring job schedulers to work with the ICE
ClusterWare™ platform, see Monitoring Scheduler Info.

Below the Node Filtering subpanel is the Node Grid/Node List subpanel showing each node in a potentially filtered
display. Each node is color-coded to indicate status and health to quickly highlight any anomalies.

The Create nodes text box is available at the bottom of the page. The only field required to add a new node to the
cluster is the MAC address. Alternatively, you can supply a JSON string that adds multiple nodes.

For example, to create five compute nodes, you could provide:

[{"mac":"FF:11:22:33:44:55"}, {"mac":"11:22:33:a4:fe:66"}, {"mac":"22:33:44:55:66:77"},
{"mac":"00:99:88:77:66:55"}, {"mac":"ef:45:fd:43:23:54"}]

Or you can create a node with multiple fields, such as:

{ "mac": "11:22:33:44:55:66", "attributes": { "_boot_config": "SlurmBoot" }}

4.14.1 Node Filtering
Node Filtering allows you to view, create, and manage subsets of compute nodes and can be used to select subsets of
the full set of nodes for display in Node Grid or Node List mode.

A filter can be defined and saved as a Dynamic Group, which is dynamic in the sense that a specific filtering criteria

98 Chapter 4. Administration

ICE ClusterWare Documentation, Release 12.4.0

may show different nodes when applied at different times. You can also create a dynamic group from the Dynamic
Groups Page.

The following actions are available in the Node Filtering section:

• Select a dynamic group - Selecting an existing dynamic group from the Dynamic Group menu updates the list
of displayed nodes per the Selector field.

• Enter a selector expression - Once a valid selector is entered into the Selector field, the list of displayed nodes
updates.

• Select Manage Dynamic Groups from the Dynamic Group menu - Opens the Dynamic Groups page.

• Select Clear from the Dynamic Group menu - Resets node filtering.

4.14.2 Node Grid Display

The Node Grid is a row/column grid display where each node is represented by a cell. Above the grid display is a
panel containing node status summary information and display options. Each node/cell conveys data with its visual
properties:

• Label - This is the node name that appears on the cell. Long names are truncated. The full name is visible in the
Node cell.

• Node status - The background color of the cell indicates node status: blue=UP, red=DOWN, orange=BOOTING,
outline (no background color)=NEW.

• Scheduler status indicator - This indicator is present only if Slurm is configured. Possible values: UNKNOWN,
READY/IDLE, BUSY, UNUSABLE/ERROR. If the indicator is ERROR, there may be an accompanying error
message. This is displayed when the user hovers over the Scheduler Status Indicator.

You can interact with cells in two ways:

• Hovering: Exposes a pop-up containing additional identification and status information about the node.

• Clicking: Exposes a pop-up containing more details than what is seen in the Hovering popup.

4.14. Nodes Page 99

ICE ClusterWare Documentation, Release 12.4.0

4.14.3 Node List Display

This display is the unfiltered list of nodes. This example cluster has 49 total nodes. Note the "10 per page" in the lower
right and the page number selectors in the lower left.

Above the table you can note the existence "7 unhealthy" nodes. Suppose we filter for those nodes:

100 Chapter 4. Administration

ICE ClusterWare Documentation, Release 12.4.0

Now you see just the seven unhealthy nodes, and in their Attributes you can see why the health checking script has
decided these are unhealthy: "Scratch space is not mounted".

Immediately above the table showing each node (as filtered or unfiltered) is an "Actions" text box. When the admin
selects one or more nodes (either individual nodes by clicking on the box to the left of the node name, or all nodes by
clicking on the box to the left of the title "Name"), then clicking in the "Select action" text box exposes several possible
actions that can be taken against all the selected nodes. To the right of the "Actions" select menu indicates precisely
how many nodes will be subject to the selected action.

The available actions:

• Select action

• Execute. . .

• Soft Control: Reboot, Reboot - kexec, Reset, Shutdown

• Hard Control: Power On, Power Off, Cycle Power

• Other: Delete

4.15 Executing Commands
A cluster administrator can execute commands on one or more compute nodes using the scyld-nodectl tool. For
example:

scyld-nodectl -i n0 exec ls -l /

passes the command, e.g. ls -l /, to the head node, together with a list of target compute nodes. The head node will
then ssh to each compute node using the head node's SSH key, execute the command, and return the output to the calling
tool that will display the results. Note that this relay through the REST API is done because the ICE ClusterWare™
tools may be installed on a machine that is not a head node and is not able to directly access the compute nodes.

Note that even if DNS resolution of compute node names is not possible on the local machine, scyld-nodectl exec
will still work because it retrieves the node IP addresses from the ClusterWare database via the head node. Further,
once an administrator has appropriate keys on the compute nodes and has DNS resolution of compute node names,

4.15. Executing Commands 101

ICE ClusterWare Documentation, Release 12.4.0

they are encouraged to manage nodes either directly using the ssh or pdsh commands or at a higher level with a tool
such as ansible.

Commands executed through scyld-nodectl exec are executed in parallel across the selected nodes. By default 64
nodes are accessed at a time, but this is adjustable by setting the ssh_runner.fanout to a larger or smaller number. This
variable can be set in an administrator's ~/.scyldcw/settings.ini or can be set in /opt/scyld/clusterware/
conf/base.ini on a head node. Setting the ssh_runner.fanout variable to a value less than or equal to 1 causes all
commands to be executed serially across the nodes.

Some limited support is also provided for sending content to the stdin of the remote command. That content can be
provided in a file via an option, e.g.:

scyld-nodectl -i n0 exec --stdin=@input.txt dd of=/root/output.txt

or the content can be provided directly:

scyld-nodectl -i n0 exec --stdin='Hello World' dd of=/root/output.txt

or the content can be piped to scyld-nodectl, and this time optionally using redirection on the compute node to write
to the output file:

echo 'Hello world' | scyld-nodectl -i n0 exec cat > /root/output.txt

When a command is executed on a single node, the command's stdout and stderr streams will be sent unmodified
to the matching file descriptor of the scyld-nodectl command. This allows an administrator to include remote
commands in a pipe much like ssh. For example:

echo 'Hello world' | scyld-nodectl -i n0 exec tr 'a-z' 'A-Z' > output.txt

will result in a the local file output.txt containing the text "HELLO WORLD". The scyld-nodectl exec exit
code will also be set to the exit code of the underlying command. When a command is executed on multiple nodes, the
individual lines of the resulting output will be prefixed with the node names:

[admin@virthead]$ scyld-nodectl -in[0-1] exec ls -l
n0: total 4
n0: -rw-r--r--. 1 root root 13 Apr 5 20:39 output.txt
n1: total 0

When executing a command on multiple nodes, the exit code of the scyld-nodectl exec command will only be
0 if the command exits with a 0 on each node. Otherwise the tool return code will match the non-zero status of the
underlying command from one of the failing instances.

The mechanism for passing stdin should not be used to transfer large amounts of data to the compute nodes, as the
contents will be forwarded to the head node, briefly cached, and copied to all compute nodes. Further, if the data was
passed as a stream either through piping to the scyld-nodectl command or passing the path to a large file via the
--stdin=@/path/to/file mechanism, the nodes will be accessed serially, not in parallel, so that the stream can
be rewound between executions. This is supported for convenience when passing small payloads, but is not efficient
in large clusters. A more direct method such as scp or pdcp should be used when the content is more than a few
megabytes in size. Also note that even when communicating with a single compute node, this is not truly interactive
because all of stdin must be available and sent to the head node before the remote command is executed.

102 Chapter 4. Administration

ICE ClusterWare Documentation, Release 12.4.0

4.16 Create Nodes

4.16.1 Node Creation with Known MAC address(es)
When a new node's MAC address is known to the cluster administrator, the simplest method is add the node to the
cluster is to use scyld-nodectl create action and supply that node's MAC address:

scyld-nodectl create mac=11:22:33:44:55:66

and the node is assigned the next available node index and associated IP address.

The administrator can also add the node at an index other than the next available index, e.g., to add a node n10:

scyld-nodectl create mac=11:22:33:44:55:66 index=10

Of course, if a node already exists for the specified MAC or index, then an error is returned and no node is created.

Adding nodes one at a time would be tedious for a large cluster, so an administrator can also provide JSON formatted
content to the create action. For example,

scyld-nodectl create --content @path/to/file.json

where that file.json contains an array of JSON objects, each object describing a single node, e.g., for two nodes:

[
{ "mac": "11:22:33:44:55:66" },
{ "mac": "00:11:22:33:44:55" }

]

The content argument can also directly accept JSON, or an INI formatted file, or a specially formatted text file. Details
of how to use these alternative formats are available in ICE ClusterWare Command Line Tools.

4.16.2 Node Creation with Unknown MAC address(es)
A reset or powercycle of a node triggers a DHCP client request which embeds the node's MAC address. A head node
with an interface that is listening on that private cluster network and which recognizes that MAC address will respond
with an IP address that is associated with that MAC, unless directed to ignore that node. A ICE ClusterWare™ head
node can be so directed to ignore the known-MAC node by using a _no_boot attribute (see _no_boot), and a ClusterWare
6 or 7 master node can employ a /etc/beowulf/config file masterorder configuration directive to consider this
known-MAC node to be owned by another head/master node.

A ClusterWare DHCP server which does not recognize the incoming MAC will by default ignore the incoming DHCP
client request. To override this default:

scyld-clusterctl --set-accept-nodes True

and then any head node that shares the same database will add that new MAC to the shared ClusterWare database,
assign to it the next available node index and associated IP address, and proceed to attempt to boot the node.

If a ClusterWare 6 or 7 beoserv daemon is alive and listening on the same private cluster network, then that master
node should have its /etc/beowulf/config specify nodeassign locked, which directs its beoserv to ignore unknown
MAC addresses.

When all new nodes with previously unknown MAC addresses are thus merged into the ClusterWare cluster, then the
cluster administrator should again reenable the default functionality with:

scyld-clusterctl --set-accept-nodes False

4.16. Create Nodes 103

ICE ClusterWare Documentation, Release 12.4.0

If multiple new nodes concurrently initiate their DHCP client requests, then the likely result is a jumbled assignment of
indices and IP addresses. Cluster administrators often prefer nodes in a rack to have ordered indices and IP addresses.
This ordered assignment can be accomplished by performing subsequent carefully crafted scyld-nodectl update
actions, e.g.,

scyld-nodectl -i n10 update index=100
scyld-nodectl -i n11 update index=101
scyld-nodectl -i n12 update index=102
scyld-nodectl -i n10,n11,n12 reboot # at a minimum, reboot the updated nodes

ò Note

Desired ordering can more easily be accomplished by performing the initial node resets or powercycling for each
individual node in sequence, one at a time, and allowing each node to boot and get added to the database before
initiating the next node's DHCP request.

4.16.3 Support for Diskful Nodes

s Important

This software is a TECHNOLOGY PREVIEW that is being rolled out with limited features and limited support.
Customers are encouraged to contact Penguin with suggestions for improvements, or ways that the tool could be
adapted to work better in their environments.

The ICE ClusterWare™ head nodes can be used to host packages that are needed during the installation of the compute
nodes. In particular, the clusterware-node package must be installed if the node is to be fully integrated with the
ClusterWare platform. Other tools can also be staged on the head nodes for use on the compute nodes. For example,
to integrate a compute node with the ClusterWare monitoring system, the telegraf and clusterware-telegraf
packages are needed.

Each head node can offer a set of RPM, DEB, and TAR packages through an API end-point. Clients can then download
those packages with a tool like curl.

RPM files can be automatically converted to TAR files for those systems that may not support other packaging systems.
Note that while DEB packages may be provided by the head nodes, they cannot be converted to TAR files.

ò Note

The examples will use an IP address for the head node since, if the ClusterWare platform is not yet installed, the
node may not be able to resolve a head node's hostname.

4.16.3.1 Pre-Installer Script

In cases where the underlying system features are unknown, a "pre-installer" script can be downloaded from a head
node. The script runs standard tests to determine the CPU-architecture, the base OS, and the type of packaging system
available. The script provides the head node with the collected information and finally downloads and runs a customized
installer that is better suited to that system.

To get a copy of the pre-installer for use in a custom script, download it through the API:

curl -o cw-preinst http://10.10.1.4/api/v1/install/client/installer

104 Chapter 4. Administration

ICE ClusterWare Documentation, Release 12.4.0

If the system configuration is already known, directly download and run a suitable installer script rather than starting
with the pre-installer script.

4.16.3.2 Installer Scripts

After the pre-installer completes its tests, it posts the data to the head node and downloads the actual installer script.
The pre-installer automatically runs this new script to complete the installation.

While the pre-installer will attempt to find the relevant system information, it may not be able to determine some
features and will mark them as “unknown”. The head node uses the known features to determine the best installer.
Even in the case where all features are properly detected, the head node may not have a fully customized installer for
that particular combination of attributes. In those cases, it may reply with a more "generic" script that should work
on a wide range of related or similar systems. For example, if the CPU-architecture is unknown but RPM support is
detected, then the installer may leverage RPM-based installation of packages since it can assume that the RPM tooling
will detect and install suitable packages.

While the installer does enable various Systemd services, it does not start those services. It is often easiest to reboot the
system so that Systemd starts everything in the correct order, but you can also start the cw-status-updater service
manually.

To download a copy of the installer to use as a starting point for a custom script, use the same API endpoint as before,
but append the optional information to the URL:

curl -o cw-installer http://10.10.1.4/api/v1/install/client/installer?arch=x86_64&
→˓os=rhel&pkg=rpm

where:

• arch is one of: x86_64 or aarch64

• os is one of: rhel (includes RedHat, Rocky, Centos), debian, cumulus, or sonic (the latter two are network
operating systems)

• pkg is one of: rpm, deb, or tar

The TAR installer should work for many Linux systems and can be downloaded with:

curl -o cw-installer http://10.10.1.4/api/v1/install/client/installer?pkg=tar

4.16.3.3 Installation Logs

For both the pre-installer and installer scripts, logging output is produced as the script executes to enable error triage
if necessary. Both log files are written to the /tmp directory, named as CLUSTERWARE_PRESINSTALL_LOG and
CLUSTERWARE_INSTALL_LOG.

If the pre-install script is skipped (for example, if the TAR-based installer is directly selected through the API), then
only the CLUSTERWARE_INSTALL_LOG is produced.

4.16.3.4 Head Node Preparation

As of 12.3.0, head nodes contain a "client packages" directory, /opt/scyld/clusterware/clientpkgs, with sub-
directories for the installers as well as DEB, RPM, and TAR packages. By default, the package directories are empty,
but admins can populate them in a variety of ways:

• By copying files from the ClusterWare ISO (the ScyldPackages directory)

• By running dnf commands to download relevant packages

• By manually downloading RPMs from other sources

4.16. Create Nodes 105

ICE ClusterWare Documentation, Release 12.4.0

Any RPM files should be put in the rpm directory and DEB files in the deb directory. The tar directory can be left
empty as the system will auto-convert RPMs to TAR files when requested by a node.

4.16.3.5 RPM and DEB Installations

The RPM and DEB installers install packages with the related tools: rpm or apt. This ensures that any dependencies
are met, pre- or post-installation scripts are run, cross-package trigger scripts are run, etc.

To download the client packages inside a custom script, use the "download" endpoint along with the package type:

curl -o mypkg.rpm http://10.10.1.4/api/v1/install/client/download/rpm/mypkg

4.16.3.6 TAR Installations

To support a wider range of systems, the ClusterWare platform provides an RPM-to-TAR conversion process for any
RPMs in the head node's client-package repository. The TAR installer automatically downloads the related TAR file
and unpacks it into /opt/scyld/<package-name>. Any files that should be installed in other directories are located
in the ./pkg directory along with any pre- or post-installation scripts. The TAR installer automatically copies relevant
files from ./pkg into /usr, /lib, and /etc as needed. It also automatically runs any post-install scripts.

The RPM-to-TAR conversion extracts any cross-package trigger scripts that were present in the original RPM, but
the TAR installer does NOT automatically run those scripts. RPM refers to these as "triggerin" scripts and they often
modify the installation process based on the presence of other packages on the system. Admins should check for any
such trigger scripts and determine if they are needed for their particular system.

To download the client packages inside a custom script, use the "download" endpoint along with the TAR package type:

curl -o mypkg.tar.gz http://10.10.1.4/api/v1/install/client/download/tar/mypkg

The head node automatically converts RPM to TAR if it cannot find a pre-existing TAR package. Once converted, the
TAR package is cached on the head node for use by other compute nodes.

4.16.4 Compute Node Fields
Use the following commands to view various compute node fields (example commands for node n0):

• View the full list of fields using long-form arguments:

scyld-nodectl -i n0 list --long-long

• View the full list of fields using shorthand arguments:

scyld-nodectl -i n0 ls -L

• View the abbreviated list of fields using long-form arguments:

scyld-nodectl -i n0 list --long

• View the abbreviated list of fields using shorthand arguments:

scyld-nodectl -i n0 ls -l

The type field is currently set to "compute", although future updates to ICE ClusterWare™ may add additional values.

The groups and attributes fields are described in more detail in Node Attributes and in the commands scyld-nodectl
and scyld-attribctl.

Prior to a node booting, the system informs the DHCP server of MAC-to-IP address mappings for nodes known to the
system. Changes to node indices, IP, or MAC addresses may affect these mappings and cause updates to be sent to the

106 Chapter 4. Administration

ICE ClusterWare Documentation, Release 12.4.0

DHCP server within a few seconds. When a node makes a DHCP request, the DHCP server maps that node's MAC
address to the correct IP and provides additional options to the booting node, including where to find the correct boot
files. These boot files are linked in boot configurations stored in the database.

4.16.5 Compute Nodes IPMI Access
ipmitool is a hardware management utility that supports the Intelligent Platform Management Interface (IPMI) spec-
ification v1.5 and v2.0.

IPMI is an open standard that defines the structures and interfaces used for remote monitoring and management of a
computer motherboard (baseboard). IPMI defines a micro-controller, called the "baseboard management controller"
(BMC), which is accessed locally through the managed computer's bus or through an out-of-band network interface
connection (NIC).

The root can use ipmitool for a variety of tasks, such as:

• Inventory a node's baseboards to determine what sensors are present

• Monitor sensors (fan status, temperature, power supply voltages, etc.)

• Read and display values from the Sensor Data Repository (SDR)

• Read and set the BMC's LAN configuration

• Remotely control chassis power

• Display the contents of the System Event Log (SEL), which records events detected by the BMC as well as events
explicitly logged by the operating system

• Print Field Replaceable Unit (FRU) information, such as vendor ID, manufacturer, etc.

• Configure and emulate a serial port to the baseboard using the out-of-band network connection known as serial
over LAN (SOL)

Several dozen companies support IPMI, including many leading manufacturers of computer hardware. You can learn
more about OpenIPMI from the OpenIPMI project page at http://openipmi.sourceforge.net, which includes links to
documentation and downloads.

The node's power_uri field in the database is optional and informs the head node(s) how to control the power to a given
node. A plugin interface allows for different forms of power control, currently supporting IPMI for bare metal nodes,
and KVM (virsh) or VirtualBox (vbox) for different types of virtual nodes. For example, a power_uri for a VirtualBox
virtual node might be:

vbox://192.168.56.1/CW_Compute0

Production system compute nodes are generally bare-metal nodes that can be controlled via the ipmitool command
that communicates with the node's Baseboard Management Controller (BMC) interface. Set a power_uri with the
appropriate BMC IP address and username/password access credentials for these nodes. For example:

ipmi:///admin:password@172.45.88.1

With power_uri, the head node communicates with that compute node's BMC located at 172.45.88.1 using the
username "admin" and password "password" to perform a scyld-nodectl power on, power off, power cycle,
shutdown --hard, or reboot --hard.

If for any reason only a specific remote machine can execute ipmitool to control a node, then add that server name,
and an optional username and password, to the power_uri. The local head node will ssh to that remote server and
execute the ipmitool command from there. For example, the power_uri:

ipmi://remote_server/admin:password@172.45.88.1

4.16. Create Nodes 107

http://openipmi.sourceforge.net

ICE ClusterWare Documentation, Release 12.4.0

sends the ipmitool command details to server "remote_server" for execution.

The scyld-nodectl "soft" shutdown --soft and reboot --soft commands do not use the power_uri. Rather,
they ssh to the compute node to execute the local /usr/sbin/shutdown or /usr/sbin/reboot command with
appropriate arguments. A simple scyld-nodectl -i <NODE> reboot (or shutdown) first attempts a "soft" action
if the node is "up" and the head node can communicate with the node. If the "soft" action is not possible, or does not
complete within a reasonable time, then the scyld-nodectl resorts to a "hard" action using the power_uri connection.

4.17 Boot Nodes

4.17.1 Compute Node Initialization Scripts
All compute node images should include the clusterware-node package. This package includes systemd services
used for periodically reporting node status back to the head node as well as initialization scripts run as the node is
booting.

At the end of the boot process described in Boot Configurations, the mount_rootfs script hands control of the machine
over to the standard operating system initialization scripts when it switches to the newly mounted root. Shortly after
networking is established on the booting node, it contacts the parent head node, the compute node begins periodic
pushes of status information to the parent, which stores that information in the ICE ClusterWare™ database. The first
data push includes detected hardware information, while subsequent data only contains the more ephemeral node status
information. With each status update the node also retrieves its attribute list and stores this list as an INI file at /opt/
scyld/clusterware-node/etc/attributes.ini. Code running on the compute node can use the contents of this
file to customize the node configuration. A simple attributes.ini file:

[Node]
UID = c1bf15749d724105bce9e07a3d79cb69

[Attributes]
_boot_config = DefaultBoot

The [Node] section will include node-specific details, while the [Attributes] section contains the node attributes as
determined from the node's groups using the process described in Node Attributes. The clusterware-node package
also contains a symlink at /etc/clusterware pointing to /opt/scyld/clusterware-node/etc/.

Shortly after the first status push, a series of shell scripts are executed on the node to perform ClusterWare-specific
node initialization. These scripts are linked in /opt/scyld/clusterware-node/scripts-enabled and located in
/opt/scyld/clusterware-node/scripts-available.

All such scripts should include /opt/scyld/clusterware-node/functions.sh for common variables and func-
tions, and should use the attributes.ini described previously to determine what actions are necessary. Cluster
administrators are invited to enable and disable these scripts in their root file system images as they see fit and to con-
tribute improved or added scripts back to the ClusterWare developers for the continuing improvement of the product.

4.17.2 Booting From Local Storage Cache
Cluster designers sometimes include storage on compute nodes as scratch space or to fulfill the requirements of other
cluster technologies such as caching in high speed storage systems. If a cluster administrator is able to partition off
some of that space, the ICE ClusterWare™ platform can be configured to take advantage of this local storage. This can
free up RAM that would otherwise be used to store the operating system and libraries, and in some circumstances of a
very large node count may decrease boot-time network load for nodes which have local storage.

When a node boots using the disked boot_style, it checks two other attributes: _disk_cache and _disk_root. Each at-
tribute should be set to a value that can be passed as a device to the mount command. This includes explicit partition
paths such as /dev/sda2 or /dev/nvme0n1p4 as well as LABEL=X or UUID=Y aliases. Because UUIDs are ran-
domly generated during partitioning or file system creation, they are less suitable for cluster use since every node would

108 Chapter 4. Administration

ICE ClusterWare Documentation, Release 12.4.0

require a different value. Similarly, a heterogeneous cluster may have different physical disk configurations requiring a
cluster administrator to specify different partition paths for different classes of nodes. For these reasons we encourage
cluster administrators to label the target partitions using a tool appropriate to the file system, e.g. e2label. Because
the _disk_cache and _disk_root attributes are ignored by other boot styles, setting nodes to the disked style can be used
as a flag to enable and disable booting from local storage without otherwise altering the node's boot configuration.

Early in the boot process a disked node will attempt to mount the partition specified by the _disk_cache attribute. If
this attribute does not exist or if the partition specified cannot be mounted, an error will be logged and booting will
continue without local caching. Shortly after the cache is mounted, the mount_rootfs script will attempt to mount
the specified _disk_root partition. If this partition is not provided or cannot be mounted, an error is logged and booting
continues in a rwram or roram style depending on the type of disk image downloaded. Log messages from this early
boot process can be found in /var/log/messages on the node, and ClusterWare-specific early boot messages are also
captured in the /opt/scyld/clusterware-node/atboot/cw-dracut.log file.

If the disk cache is successfully mounted, then prior to downloading any image the compute node will check if the
image is already present in the cache. If the image is present, then the mount_rootfs script will compare the local file
size and checksum to values provided by the head node. If both match, then the image download is skipped and the
local copy will be used. Alternatively, if the image is not present in the cache or there is a size or checksum mismatch,
then any local copy will be deleted and a fresh copy of the image will be downloaded into the cache partition.

During subsequent boots the booting node will confirm the cached image is valid and use the local copy whenever
possible. Note that if the cache partition is large enough to hold several compressed images, then the local cache can
provide a somewhat faster means to switch between images on consecutive boots. If the cache ever fills, thereby causing
an image download to fail, then the cache will be cleared and the node will reboot to try again.

s Important

Please note that a cache partition must be large enough to hold at least the compressed compute node image plus a
few megabytes, though ideally should be sized to hold a handful of compressed images.

If the disk root is successfully mounted, then when the image would usually be unpacked into RAM, the mount_rootfs
script will instead delete the contents of the disk root and unpack the image into the now empty partition. Booting will
then continue with that partition as the system root. Note that any changes made to the contents of this partition are
intentionally discarded during the next disked boot. This is done to prevent cluster administrators from inadvertently
creating a heterogeneous cluster with unexpected and unpredictable behavior.

s Important

Root partitions must be large enough to hold the uncompressed image in addition to files that may be installed
after boot. A rough minimum estimate is to provide 2.5 times the space required by the compressed image. We
encourage administrators to err on the side of providing excess space, as storage is usually inexpensive.

In order to reduce the chances of automating destructive mistakes, the ClusterWare platform does not provide tools
to automatically partition compute node disks based on node attributes. Cluster administrators can manually partition
disks in individual nodes for very small clusters and should research parallel management tools such as ansible when
managing disk partitions on larger clusters: https://docs.ansible.com/ansible/latest/modules/parted_module.html.

4.17.2.1 Failing To Boot From Local Storage

If a compute node is configured to boot from local storage, and yet after successfully booting it is actually instead using
a RAM root filesystem, then the problem may be that the initramfs image does not contain a needed kernel module to
mount the root filesystem on local storage. Examine /opt/scyld/clusterware-node/atboot/cw-dracut.log
on the compute node to determine if the mount failed and why. If the problem is a missing kernel module, then add
that to the initramfs. For example, add the virtio_blk module, and rebuild the boot config:

4.17. Boot Nodes 109

https://docs.ansible.com/ansible/latest/modules/parted_module.html

ICE ClusterWare Documentation, Release 12.4.0

scyld-mkramfs --update DefaultBoot --kver 3.10.0-957.27.2.el7.x86_64 --drivers virtio_blk

4.17.3 Booting Diskful Compute Nodes
In addition to booting diskless clients, the ICE ClusterWare™ platform can also integrate with "diskful" compute nodes
that boot from full installations on local disk drives. See Using Kickstart for examples.

Add a locally installed node to the cluster using the same mechanisms as a diskless node. For example, if the following
are true:

• The new node's network interface is physically connected to the private cluster network shared by existing head
node(s) and compute nodes

• The interface is configured to use a dynamic IP address assigned by DHCP at boot time

then execute the following command on the head node:

scyld-nodectl create mac=00:11:22:33:44:55

The ClusterWare platform assigns the next available IP address to that MAC address.

Alternatively, if the new node has a static IP address, first ensure that static address is in the defined ClusterWare DHCP
range, then specify that static address in your command:

scyld-nodectl create mac=00:11:22:33:44:55 index=100 ip=10.10.42.100

4.17.3.1 Installing the clusterware-node Package

For the new node to fully integrate as a ClusterWare compute node, install the clusterware-node package and depen-
dencies on the new node as the root user. The node does not use the initramfs provided by a ClusterWare boot
configuration for diskless nodes. As a result, after installing clusterware-node, update the configuration file /opt/
scyld/clusterware-node/etc/node.sh on the node. The configuration file instructs the node how to communi-
cate with a head node. This file must define the base_url of a head node and optionally the iface network interface name
that assigned the MAC address used in the scyld-nodectl create command that added the node to the database.

For example, for interface eth0 that connects to head node head-01, make the following edits:

[root@newnode]$ cat /opt/scyld/clusterware-node/etc/node.sh
Specify a base_url for any head node
base_url=http://head-01/api/v1

Specify the network interface used to reach the head node(s)
iface=eth0

Optionally force (sslverify=yes) or disable (sslverify=no) SSL
certificate checking. Leaving this option blank allows for HTTPS
without certificate checking.
#sslverify=

On the node, run the following command:

/usr/bin/update-node-status --hardware --upload

This command sends the initial node hardware information to the head node. You can then reboot the node to fully
integrate it into the cluster.

110 Chapter 4. Administration

ICE ClusterWare Documentation, Release 12.4.0

The newly booted compute node is controlled through the customary scyld-nodectl reboot, shutdown, and exec
commands. To support --hard mode, configure the node's power_uri field to provide appropriate ipmitool au-
thentication and an IP address of the node's Baseboard Management Controller (BMC). For example: ipmi:///
admin:password@172.45.88.1. See Compute Nodes IPMI Access and Database Objects Fields and Attributes for
details.

4.17.3.2 Additional Support for Diskful Nodes

ClusterWare head nodes provide additional support for diskful node installation through a set of pre-installer scripts,
installer scripts, and a repository of packages that compute nodes can use to download and install node packages.
Additionally, the head node repository can automatically convert some packages to a TAR file that should be installable
on a wide variety of platforms.

See Support for Diskful Nodes for details, including the preparation steps needed on the head nodes.

4.17.4 scyld-reports
NAME
scyld-reports -- Manage and generate cluster reports.

USAGE
scyld-reports

[-h] [-v] [-q] [[-c | --config] CONFIG] [--base-url URL] [[-u | --user] USER[:PASSWD]]
[--human | --json | --csv | --table] [--pretty | --no-pretty] {setup, usage, unknown}
...

DESCRIPTION
This tool manages and generates cluster reports.

OPTIONAL ARGUMENTS
-h, --help Print usage message and exit. Ignore trailing args, parse and ignore preceding

args.

-v, --verbose Increase verbosity.

-q, --quiet Decrease verbosity.

-c, --config CONFIG Specify a client configuration file CONFIG.

ARGUMENTS TO OVERRIDE BASIC CONFIGURATION DETAILS
--base-url URL Specify the base URL of the ClusterWare REST API.

-u, --user USER[:PASSWD]
Masquerade as user USER with optional colon-separated password PASSWD.

FORMATTING ARGUMENTS
--human Format the output for readability (default).

--json Format the output as JSON.

--csv Format the output as CSV.

--table Format the output as a table.

--pretty Indent JSON or XML output, and substitute human readable output for other for-
mats.

--no-pretty Opposite of --pretty.

4.17. Boot Nodes 111

ICE ClusterWare Documentation, Release 12.4.0

ACTIONS
setup [--accountant [ACCOUNTANT]]

Specify the accountant URL with credentials. Contact Penguin Computing Support or Professional Services for
assistance.

usage [--start START] [--end END] [--users USERS] [--queues QUEUES]
Display cluster usage. This requires a prior scyld-reports setup` of the accountant connection.

--start START Specify a starting date. Defaults to first of current month.

--end END Specify a duration in days or an end date. Defaults to days until the end of
the month.

--users USERS Filter the results using comma-separated list of users.

--queues QUEUES Filter the results using the comma-separated list of queues.

unknown [--newer-than SECS] [--columns COLS] [--sort COLS] [--lookup]
[--as-creates [POOL]] [--flush]

Display MAC addresses of unknown nodes that have attempted to boot.

--newer-than SECS Only show MACs with contact within the last SECS seconds.

--columns COLS Display the columns in the desired comma-separated name order. Default
is display all columns.

--sort COLS Sort entries based on the provided column names.

--lookup Attempt to identify MAC OUIs.

--as-creates [POOL]
Print a specific scyld-nodectl create command for each unknown MAC, optionally associating a new
node with a specific POOL.

--flush Flush the current unknown node list.

EXAMPLES
scyld-reports unknown

Display the full list of unknown nodes that have attempted to boot.

scyld-reports unknown --newer-than 1200 --columns mac,seen

Display only nodes which have made contact in the last 1200 seconds (20 minutes), showing each node's
MAC address and last seen timestamp.

scyld-reports unknown --newer-than 600 --as-creates

Display only nodes which have made contact in the last 600 seconds (10 minutes), and for each show the
scyld-nodectl create mac=<MACADDR> command that would add that node as a compute node.

RETURN VALUES
Upon successful completion, scyld-reports returns 0. On failure, an error message is printed to stderr and scyld-
reports returns 1.

112 Chapter 4. Administration

ICE ClusterWare Documentation, Release 12.4.0

4.18 Manage Nodes

4.18.1 Changing IP Addresses
To change IP addresses on a cluster, generate a configuration file of the currently state of the nodes with their current
IP addresses, edit the file to change one or more IP addresses as desired, re-load the file, and trigger the head node to
recompute the new addresses and update the database. For example:

scyld-cluster-conf save new_cluster.conf
manually edit new_cluster.conf to change IP addresses
scyld-cluster-conf load new_cluster.conf
scyld-nodectl -i <NODES_THAT_CHANGE> update ip=

The new addresses are not seen by compute nodes until they reboot or perform a dhcp renewal.

4.18.2 Node Name Resolution
The scyld-install script installs the clusterware-dnsmasq package which provides resolution services for head node
names. Similar to the clusterware-iscdhcp, this package depends on a standard OS provided service, but runs a private
instance of that service, configuring it through the templated configuration file /opt/scyld/clusterware-dnsmasq/
dnsmasq.conf.template. Within that file, fields like "<DOMAIN>" are substituted with appropriate values from
the cluster network configuration, and the resulting file is rewritten.

Specifically, the "domain" field (defaulting to .cluster.local) is appended to compute node names (n0, n1, etc.) to
produce a fully-qualified domain name. That default value can be overridden in the cluster configuration provided at
installation time or loaded via the scyld-cluster-conf command. Multiple domains can be defined in that configu-
ration file and are applied to any subsequently defined network segments until a later line sets a new domain value. Note
that when changing this value on an established cluster, the cluster administrator may want to only load the networking
portion of the cluster configuration instead of recreating already configured compute nodes:

scyld-cluster-conf load --nets-only cluster.conf
sudo systemctl restart clusterware

By default, any hosts listed in the /etc/hosts file on the head node will also resolve on the compute nodes through
dnsmasq as will names added through the scyld-clusterctl hosts command. The localise-queries key-
word in the template file is provided because head nodes commonly have multiple addresses on different networks
and dnsmasq should reply with the IP appropriate to the requestor. Commenting out localise-queries will cause
dnsmasq to reply with all IPs for a queried name. To entirely prevent dnsmasq being populated with head node IPs set
leases.register_heads = False in /opt/scyld/clusterware/conf/base.ini and restart the clusterware
service. These dnsmasq behaviors and many others can be changed in the aforementioned configuration template.

An administrator may modify the template file to completely remove the domain or to otherwise modify the dnsmasq
configuration. Please see the dnsmasq project documentation for details of the options that service supports. Simi-
larly, the dhcpd configuration template is located at /opt/scyld/clusterware-iscdhcp/dhcpd.conf.template,
although as that service is much more integral to the proper operation of the ClusterWare platform, changes should
be kept to an absolute minimum. Administrators of more complicated clusters may add additional "options" lines or
similarly remove the "option domain-name" line depending on their specific network needs. Additional DNS servers
can also be provided to compute nodes through the "option domain-name-servers" lines. As with dnsmasq, please see
the ISC DHCP documentation for supported options.

During compute node boot, dracut configures the bootnet interface of the node with the DNS servers and other network
settings. These settings may be changed by cluster administrators in startup scripts as long as the head node(s) remain
accessible to the compute nodes and vice versa.

During initial installation, the scyld-install script attempts to add the local dnsmasq instance (listening on the
standard DNS port 53) as the first DNS server for the head node. If this is unsuccessful, DNS resolution will still work
on compute nodes, although the administrator may need to add local DNS resolution before ssh and similar tools can

4.18. Manage Nodes 113

ICE ClusterWare Documentation, Release 12.4.0

reach the compute nodes. Please consult your Linux distribution documentation for details. Note that DNS is not used
for compute node name resolution within the REST API or by the ClusterWare administrative tools; rather, the database
is referenced in order to map node ids to IP addresses.

4.18.3 Command-Line Monitoring of Nodes
The ICE ClusterWare™ platform provides two primary methods to monitor cluster performance and health: the com-
mand line scyld-nodectl status tool and a more extensive graphical user interface (see Grafana Telemetry Dash-
board).

More basic node status can be obtained through the scyld-nodectl command. For example, a cluster administrator
can view the status of all nodes in the cluster:

Terse status:
[admin@virthead]$ scyld-nodectl status
n[0] up
n[1] down
n[2] new

Verbose status:
[admin@virthead]$ scyld-nodectl status --long
Nodes
n0
ip: 10.10.24.100
last_modified: 2019-04-16 05:02:26 UTC (0:00:02 ago)
state: up
uptime: 143729.68

n1
down_reason: boot timeout
ip: 10.10.42.102
last_modified: 2019-04-15 09:03:20 UTC (19:59:08 ago)
last_uptime: 59.61
state: down

n2: {}

From this sample output we can see that n0 is up and has recently (2 seconds earlier) sent status information back to
the head node. This status information is sent by each compute node to its parent head node once every 10 seconds,
although this period can be overridden with the _status_secs node attribute. The IP address shown here is the IP
reported by the compute node and should match the IP provided in the node database object unless the database has
been changed and the node has not yet been rebooted.

Compute node n1 is currently down because of a "boot timeout". This means that the node attempted to boot, and the
node's initial "up" status message to the head node was not received. This could happen due to a boot failure such as
a missing network driver, a networking failure preventing the node from communicating with the head node, or if the
cw-status-updater service provided by the clusterware-node package is not running on the compute node. Other
possible values for down_reason include "node stopped sending status" or "clean shutdown".

There is no status information about n2 because it was added to the system and has never been booted. Additional node
status can be viewed with scyld-nodectl status -L (an abbreviation of --long-long) that includes the most
recent full hostname, kernel command line, loaded modules, loadavg, free RAM, kernel release, and SELinux status.
As with other scyld-*ctl commands, the output can also be provided as JSON to simplify parsing and scripting.

For large clusters the --long (or -l) display can be unwieldy, so the status command defaults to a summary. Each row
of output corresponds to a different node status and lists the nodes in a format that can then be passed to the --ids

114 Chapter 4. Administration

ICE ClusterWare Documentation, Release 12.4.0

argument of scyld-nodectl. Passing an additional --refresh argument will cause the tool to start an ncurses
application that will display the summary in the terminal and periodically refresh the display:

scyld-nodectl status --refresh

This mode can be useful when adding new nodes to the system by booting them one at a time as described in Node
Creation with Unknown MAC address(es).

4.18.4 Managing Node Failures
In a large cluster the failure of individual compute nodes should be anticipated and planned for. Since many compute
nodes are diskless, recovery should be relatively simple, consisting of rebooting the node once any hardware faults have
been addressed. Disked nodes may require additional steps depending on the importance of the data on disk. Refer to
your operating system documentation for details.

A compute node failure can unexpectedly terminate a long running computation involving that node. We strongly
encourage authors of such programs to use techniques such as application checkpointing to ensure that computations
can be resumed with minimal loss.

4.18.4.1 Replacing Failed Nodes

Since nodes are identified by their MAC addresses, replacing a node in the database is relatively simple. If the node
(n23 in the following example) was repaired, but the same network interface is still being used, then no changes are
necessary. However, if it was the network card that failed and it was replaced, then the node's MAC address can be
updated with one command:

scyld-nodectl -i n23 update mac=44:22:33:44:55:66

If the entire node was replaced, you can use the _no_boot attribute to temporarily remove the node from ICE Clus-
terWare™. You can also update the description of the node with details such as the RMA number or anticipated re-
placement timeline. When the new node arrives, run the command above to modify the MAC address to match the
replacement and then remove the _no_boot attribute to rejoin the node to the ClusterWare cluster.

If the entire node was replaced, then you may prefer to clear the node status and any history associated with that node
instead of just updating the MAC address. To do this, delete and recreate the failed node:

scyld-nodectl -i n23 delete
scyld-nodectl create index=23 mac=44:22:33:44:55:66

ò Note

Deleting a node from the ClusterWare cluster removes all of the configuration and settings for the node.

4.18.5 Soft Power Control Failures
If the scyld-nodectl reboot or shutdown commands always fall back on hard power control, the shutdown pro-
cess on the compute node may be taking too long. When this happens the scyld-nodectl reboot or shutdown
commands will pause for several seconds waiting for the soft power change to take place before falling back to direct
power control through the power_uri. A common cause for this is a network file system that is slow to unmount. The
cluster administrator should address the problem delaying shutdown, but if it is unavoidable, then the reboot and
shutdown commands accept options to adjust the timeout (--timeout <seconds>), or you can specify to use only
the soft reboot (--soft) without falling back to direct power control.

4.18. Manage Nodes 115

ICE ClusterWare Documentation, Release 12.4.0

4.18.6 Managing Large Clusters
ICE ClusterWare™ head nodes generally scale well out-of-the-box, at least from the perspective of software, since the
compute nodes' demands on a head node are primarily during node boot, and thereafter nodes generate regular, modest
Telegraf networking traffic to the InfluxDB server to report node status, and generate sporadic networking traffic to
whatever cluster filesystem(s) are employed for shared storage.

Very large clusters may exhibit scaling limitations due to hardware constraints of CPU counts, RAM sizes, and network-
ing response time and throughput. Those limitations are visible to cluster administrators using well known monitoring
tools.

4.18.6.1 Improve Scaling of Node Booting

The clusterware service is a multi-threaded Python application started by the Apache web server. By default, each head
node will spawn up to 16 worker threads to handle incoming requests, but for larger clusters (hundreds of nodes per
head node) this number can be adjusted as needed by changing the thread=16 value in /opt/scyld/clusterware/
conf/httpd_wsgi.conf and restarting the clusterware service.

4.18.7 Hostnames Page
Hostnames are entities that are not created by the ICE ClusterWare™ platform, but that the platform should be aware
of. A hostname could be a file server, database server, network gateway, or other system that interacts with one or more
ClusterWare nodes.

Use the Hostnames page to create a DNS record for the external entity. The page is available via Network > Hostnames
in the left navigation panel.

4.18.7.1 Create a Hostname

To create a hostname:

1. Click Add Hostname.

2. Add details about the hostname.

• Name: Required.

• Description: Optional.

• Type: Select either A Record or SRV Record. The remaining fields change based on your selection.

For a hostname with a DNS A Record:

– IP Address: Required. Supports IPv4 addresses.

– MAC Address: Optional.

For a hostname with a DNS SRV Record:

– Weight: Required.

116 Chapter 4. Administration

ICE ClusterWare Documentation, Release 12.4.0

– Domain: Required.

– Priority: Required.

– Port: Required.

– Proto: Required.

– Service: Required.

– Target: Required.

3. Click Add Host to save your changes.

The new hostname appears in the list at the top of the page.

4.18.7.2 Edit Hostname

To edit a hostname:

1. Click the ellipsis (...) on the far right of the row and select the Edit action. The Add/Edit Hosts pane populates
with the hostname details.

2. Make updates to the hostname.

3. Click Add/Edit Hostname to save your changes.

4.18.7.3 Delete Hostname

To delete a hostname, click the ellipsis (...) on the far right of the row and select the Delete action.

4.18.7.4 Related Links

• Manage Non-ICE ClusterWare Entities

• scyld-clusterctl

4.18.8 Manage Non-ICE ClusterWare Entities
You can configure ICE ClusterWare™ to be aware of entities outside of those created by the ClusterWare platform,
such as file servers, database servers, power distribution systems, or network gateways that interact with ClusterWare
nodes. For example, a compute node could mount a file system from server fs001, but it needs to know the IP address
of fs001. Use scyld-clusterctl with the hosts subcommand to manage these entities.

The hosts subcommand can take on a few different forms.

1. Create a DNS A record for a host with an IPv4 address:

scyld-clusterctl hosts create name=fs001 ip=10.99.88.77 type=arec

2. Create a DNS SRV record for a service running on a specified host and port:

scyld-clusterctl hosts create name=slurmctld_backup port=6817 proto=tcp␣
→˓service=slurmctld domain=cluster.local target=backuphostname type=srvrec␣
→˓priority=20

In this example, a name is provided for the database record (slurmctld_backup) and separately the names of the
service (slurmctld) and the target (backuphostname) are specified separately.

3. Create a DNS A record and a DHCP record for a host with an IPv4 address:

4.18. Manage Nodes 117

ICE ClusterWare Documentation, Release 12.4.0

scyld-clusterctl hosts create name=fs002 ip=10.99.88.78 type=arec␣
→˓mac=11:22:33:44:55:66

In this example, a DNS entry is made for the host (as with #1) and a separate DHCP record is made to match
the MAC address to the name and IP address. This allows the fs002 server to boot from the CW DHCP server,
picking up the relevant network information that it needs to connect to the network.

The hosts subcommand supports both IPv4 and IPv6 addresses. Per the DNS specs, A records are for IPv4 addresses
and AAAA records are used for IPv6 addresses. Also per the DNS specs, an SRV record should be fully resolvable
by the DNS server itself and should not return names for which it does not have an A/AAAA record for. Practically
speaking, this means that the “target” field of an SRV record should either be an IP-address or should be specified by
another scyld-clusterctl hosts entry for the A/AAAA record.

4.19 Attribute Groups

4.19.1 Database Objects Fields and Attributes
Various ICE ClusterWare™ database objects (nodes, boot configurations, image configurations, administrators, at-
tributes, etc.) each carry with them detailed descriptors called fields. Each field consists of a name-value pair and is
relevant for its database object type. Fields are predefined by the ClusterWare platform. The cluster administrator uses
the update action to change a field value.

For instance, a compute node object for each node has fields mac with the node's MAC address, name with the node's
alphanumeric name, and power_uri with a value denoting how to communicate via ipmi to that node. For example, the
command scyld-nodectl -i n0 ls -l displays all the defined fields' name-value pairs for node n0.

Compute node and Attribute Groups object types have special fields called attributes, where an attribute is a collection
of one or more attribute name-value pairs. Attribute names that begin with an underscore "_" are called reserved
attributes or system attributes. The cluster administrator uses the set action to change an attribute value. See Reserved
Attributes for details.

Additional attributes can be added by a cluster administrator as desired, each with a custom name and value defined by
the administrator. Any script on a compute node can access the local file /etc/clusterware/attributes.ini and
find that node's attributes. On the node there are helper functions in /opt/scyld/clusterware-node/functions.
sh for reading attributes, specifically the function attribute_value.

4.19.2 Attribute Groups Page
The Attribute Groups page displays the list of attribute groups as well as a dropdown menu to change the default
attribute group. The page is available via Nodes > Node Attributes in the left navigation panel.

118 Chapter 4. Administration

ICE ClusterWare Documentation, Release 12.4.0

4.19.2.1 Create Attribute Group

To create an attribute group:

1. Click Add Attribute Group.

2. Add details about the attribute group. Name and Attributes are required fields. When adding multiple attributes,
use a JSON structure with "key1":"val1" pairs. For example:

{
"_boot_config":"GpuBoot",
"_telegraf_plugins":"gpu-smi.conf"
}

3. Click Add/Edit Attribute Group to save your changes.

The new attribute group appears in the list at the top of the page.

4.19.2.2 Edit Attribute Group

To edit an attribute group:

1. Click the ellipsis (...) on the far right of the row and select the Edit action. The Add/Edit Attribute Group
pane populates with the attribute group's details.

2. Make updates to the attribute group.

3. Click Add/Edit Attribute Group to save your changes.

4.19.2.3 Delete Attribute Group

To delete an attribute group, click the ellipsis (...) on the far right of the row and select the Delete action.

4.19.2.4 Change Default Attribute Group

The Default Attribute Group is used to provide a basic boot configuration for nodes that do not already have one
specified. At system installation time, a default attribute group called DefaultAttribs is created and contains a single
attribute, _boot_config, set to DefaultBoot. Use the Default attribute group dropdown to select a different default
attribute group.

4.19. Attribute Groups 119

ICE ClusterWare Documentation, Release 12.4.0

4.19.2.5 Related Links

• Attribute Groups and Dynamic Groups

• scyld-attribctl

4.19.3 Node Attributes
The names and uses of the fields associated with each database object are fixed, although nodes may be augmented with
attribute lists for more flexible management. These attribute lists are stored in the attributes field of a node and consist
of names (ideally legal Javascript variable names) and textual values. Attribute names prefixed with an underscore
such as _boot_config or _boot_style are reserved for use by the ICE ClusterWare™ platform. These attributes may be
referenced or modified by administrator defined scripting, but changing their values will modify the behavior of the
ClusterWare platform.

Beyond their internal use, e.g. for controlling boot details, attributes are intended for use by cluster administrators
to mark nodes for specific purposes, record important hardware and networking details, record physical rack loca-
tions, or whatever else the administrator may find useful. All attributes for a given node are available and periodically
updated on the node in file /opt/scyld/clusterware-node/etc/attributes.ini. This directory /opt/scyld/
clusterware-node/etc/ is also symlinked to /etc/clusterware.

Attributes can also be collected together into attribute groups that are stored separately from the node database objects.
Administrators can then assign nodes to these groups and thereby change the attributes for a selection of nodes all at
once.

Each node has a list of groups to which it belongs, and the order of this list is important. Attribute groups appearing
later in the list can override attributes provided by groups earlier in the list. For any given node there are two special
groups: the global default group and the node-specific group. The global default group, which is defined during the
installation process and initially named "DefaultAttribs", is always applied first, and the node-specific group contained
in the node database object is always applied last. Any attribute group can be assigned to be the default group through
the scyld-clusterctl command, e.g.,

scyld-clusterctl --set-group GroupNameOrUID

An example should clarify how attributes are determined for a node. Immediately after installation the "DefaultAttribs"
group contains a single value:

[example@head ~]$ scyld-attribctl ls -l
Attribute Groups
DefaultAttribs
attributes
_boot_config: DefaultBoot

Note that fields extraneous to this example have been trimmed from this output. Looking at two nodes on this same
cluster:

[example@head ~]$ scyld-nodectl ls -l
Nodes
n0
attributes:
_boot_config: DefaultBoot

groups: []

n1
attributes:
_boot_config: DefaultBoot

groups: []

120 Chapter 4. Administration

ICE ClusterWare Documentation, Release 12.4.0

By default no attributes are defined at the node level, although all nodes inherit the _boot_config value from the "Default-
Attribs" group. If an administrator creates a new boot configuration (possibly by using the scyld-add-boot-config
script mentioned earlier) and calls it "AlternateBoot", then she could assign a single node to that configuration using
the scyld-nodectl tool, e.g.,

scyld-nodectl -i n0 set _boot_config=AlternateBoot

Examining the same nodes after this change would show:

[example@head ~]$ scyld-nodectl ls -l
Nodes
n0
attributes:
_boot_config: AlternateBoot

groups: []

n1
attributes:
_boot_config: DefaultBoot

groups: []

Of course, managing nodes by changing their individual attributes on a per-node basis is cumbersome in larger clusters,
so a savvy administrator can create a group and assign nodes to that group:

scyld-attribctl create name=AltAttribs
scyld-attribctl -i AltAttribs set _boot_config=ThirdBoot

Assigning additional nodes to that group is done by "joining" them to the attribute group:

scyld-nodectl -i n[11-20] join AltAttribs

After the above changes, node n0 is assigned to the "AlternateBoot" configuration, n11 through n20 would boot using
the "ThirdBoot" configuration, and any other nodes in the system will continue to use "DefaultBoot". This approach
allows administrators to efficiently aggregate a set of nodes in anticipation of an action against the entire set, for example
when testing new images, or if some nodes need specific configuration differences due to hardware differences such as
containing GPU hardware.

For a more technical discussion of setting and clearing attributes as well as nodes joining and leaving groups, see
Attribute Groups and Dynamic Groups, scyld-attribctl, and scyld-nodectl.

4.19.4 Dynamic Groups Page
The Dynamic Groups page displays the list of dynamic groups. The page is available via Cluster > Dynamic Groups
in the left navigation panel.

4.19. Attribute Groups 121

ICE ClusterWare Documentation, Release 12.4.0

A dynamic group provides a way to group nodes based on shared or common attributes, status, or hardware information.
They are most useful when targeting an action, such as a reboot, to a group of similar nodes.

4.19.4.1 Create Dynamic Group

To create a dynamic group:

1. Click Add Dynamic Group.

2. Add details about the dynamic group. Name and Selector are required fields. For details about specifying a
selector, see Attribute Groups and Dynamic Groups.

3. Click Add/Edit Dynamic Group to save your changes.

The new dynamic group appears in the list at the top of the page.

4.19.4.2 Update Dynamic Group

To update a dynamic group:

1. Click the dynamic group name to open the details panel for that group.

2. Click the edit icon (pencil) to enable changes.

3. Make updates to the dynamic group.

4. Click Update to save your changes.

4.19.4.3 Filter Nodes by Dynamic Group

There are two ways to filter existing nodes by dynamic group:

• On the Nodes page, select an existing dynamic group from the Dynamic Group drop-down list. The list of nodes
updates to show only nodes within that dynamic group.

• On the Dynamic Groups page, click the ellipsis (...) on the far right of the row for the dynamic group and select
the Apply to nodes action. The Nodes page appears with the dynamic group applied and the list of nodes filtered
to show only nodes within that dynamic group.

4.19.4.4 Delete Dynamic Group

To delete a dynamic group, click the ellipsis (...) on the far right of the row and select the Delete action.

122 Chapter 4. Administration

ICE ClusterWare Documentation, Release 12.4.0

4.19.4.5 Related Links

• Attribute Groups and Dynamic Groups

• scyld-attribctl

4.19.5 Attribute Groups and Dynamic Groups
The scyld-install script creates a default attribute group called DefaultAttribs. That group can be modified or
replaced, although all nodes are always joined to the default group. The cluster administrator can create additional
attribute groups, e.g.,:

scyld-attribctl create name=dept_geophysics
scyld-attribctl create name=dept_atmospherics
scyld-attribctl create name=gpu

and then assign or remove one or more groups to specific nodes, e.g.,:

scyld-nodectl -i n[0-7] join dept_geophysics
scyld-nodectl -i n[8-11] join dept_atmospherics
scyld-nodectl -i n[0-3,7-9] join gpu
scyld-nodectl -i n7 leave gpu

These group assignments can be viewed either by specific nodes:

scyld-nodectl -i n0 ls -l
scyld-nodectl -i n[4-7] ls -l

or as a table:

[admin]$ scyld-nodectl --fields groups --table ls -l
Nodes | groups
------+-----------------------------

n0 | ['dept_geophysics', 'gpu']
n1 | ['dept_geophysics', 'gpu']
n2 | ['dept_geophysics', 'gpu']
n3 | ['dept_geophysics', 'gpu']
n4 | ['dept_geophysics']
n5 | ['dept_geophysics']
n6 | ['dept_geophysics']
n7 | ['dept_geophysics']
n8 | ['dept_atmospherics', 'gpu']
n9 | ['dept_atmospherics', 'gpu']
n10 | ['dept_atmospherics']
n11 | ['dept_atmospherics']
n12 | []
n13 | []
n14 | []
n15 | []

Commands that accept group lists can reference nodes by their group name(s) (expressed with a % prefix) instead of
their node names, e.g.,:

scyld-nodectl -i %dept_atmospherics
scyld-nodectl -i %gpu
scyld-nodectl -i %dept_geophysics status -L

4.19. Attribute Groups 123

ICE ClusterWare Documentation, Release 12.4.0

Both the Kubernetes scyld-kube --init command and the Job Scheduler ${jobsched}-scyld.setup init,
reconfigure, and update-nodes actions accept --ids %<GROUP> as well as --ids <NODES>. For details, see
Kubernetes.

In addition to attribute groups, the ICE ClusterWare™ platform also supports admin-defined dynamic groups using a
query language that allows for simple compound expressions. These expressions can reference individual attributes,
group membership, hardware fields, or status fields. For example, suppose we define attribute groups "dc1" and "dc2":

scyld-attribctl create name=dc1 description='Data center located in rear of building 1'
scyld-attribctl create name=dc2 description='Data center in building 2'

and then add nodes to appropriate groups:

scyld-nodectl -i n[0-31] join dc1
scyld-nodectl -i n[32-63] join dc2

and for each node, identify its rack number in an attribute:

scyld-nodectl -i n[0-15] set rack=1
scyld-nodectl -i n[16-31] set rack=2
scyld-nodectl -i n[32-47] set rack=1
scyld-nodectl -i n[48-63] set rack=2

Note that all attribute values are saved as strings, not integers, so that subsequent selector expressions must enclose
these values in double-quotes.

Now you can query a list of nodes in a particular rack of a particular building using a --selector (or -s) expression,
and perform an action on the results of that selection:

scyld-nodectl -s 'in dc1 and attributes[rack] == "2"' status
or use 'a' as the abbreviation of 'attributes'
scyld-nodectl -s 'in dc1 and a[rack] == "2"' set _boot_config=TestBoot

Show the nodes that have 32 CPUs.
These hardware _cpu_count values are integers, not strings, and are
not enclosed in double-quotes.
scyld-nodectl -s 'hardware[cpu_count] == 32' ls
or use 'h' as the abbreviation of 'hardware'
scyld-nodectl -s 'h[cpu_count] == 32' ls

Show the nodes that do not have 32 CPUs
scyld-nodectl -s 'h[cpu_count] != 32' ls

You can also create a dynamic group of a specific selector for later use:

scyld-clusterctl dyngroups create name=b1_rack1 selector='in dc1 and a[rack] == "1"'
scyld-clusterctl dyngroups create name=b1_rack2 selector='in dc1 and a[rack] == "2"'

Show the nodes in building 1, rack 2
scyld-nodectl -i %b1_rack2 ls

Show only those %b1_rack2 nodes with 32 CPUs
scyld-nodectl -i %b1_rack2 -s 'h[cpu_count] == 32' ls

You can list the dynamic groups using scyld-clusterctl:

124 Chapter 4. Administration

ICE ClusterWare Documentation, Release 12.4.0

Show the list of dynamic groups
[admin1@headnode1 ~]$ scyld-clusterctl dyngroups ls
Dynamic Groups
b1_rack1
b1_rack2

And show details of one or more dynamic group. For example:

Show the selector associated with a specific dynamic group
[admin1@headnode1 ~]$ scyld-clusterctl dyngroups -i b1_rack1 ls -l
Dynamic Groups
b1_rack1
name: b1_rack1
selector: in dc1 and a[rack] == "1"

Or show the selector associated with a specific dynamic group in full detail
[admin1@headnode1 ~]$ scyld-clusterctl dyngroups -i b1_rack1 ls -L
Dynamic Groups
b1_rack1
name: b1_rack1
parsed: ((in "dc1") and (attributes["rack"] == "1"))
selector: in dc1 and a[rack] == "1"

The parsed line in the above output can be useful when debugging queries to confirm how ClusterWare parsed the
provided query text.

4.19.6 scyld-attribctl
NAME
scyld-attribctl -- Query and modify attribute groups for the cluster.

USAGE
scyld-attribctl

[-h] [-v] [-q] [[-c | --config] CONFIG] [--base-url URL] [[-u | --user] USER[:PASSWD]]
[--human | --json | --csv | --table] [--pretty | --no-pretty] [--show-uids] [[-i |
--ids] -i ATTRIBS | -a | --all] {list,ls, create,mk, clone,cp, update,up, replace,re,
delete,rm, get,set,clear}

OPTIONAL ARGUMENTS
-h, --help Print usage message and exit. Ignore trailing args, parse and ignore preceding

args.

-v, --verbose Increase verbosity.

-q, --quiet Decrease verbosity.

-c, --config CONFIG Specify a client configuration file CONFIG.

--show-uids Do not try to make the output more human readable.

-a, -all Interact with all attribute groups (default for list).

-i, --ids ATTRIBS A comma-separated list of attribute groups to query or modify.

ARGUMENTS TO OVERRIDE BASIC CONFIGURATION DETAILS
--base-url URL Specify the base URL of the ClusterWare REST API.

4.19. Attribute Groups 125

ICE ClusterWare Documentation, Release 12.4.0

-u, --user USER[:PASSWD]
Masquerade as user USER with optional colon-separated password PASSWD.

FORMATTING ARGUMENTS
--human Format the output for readability (default).

--json Format the output as JSON.

--csv Format the output as CSV.

--table Format the output as a table.

--pretty Indent JSON or XML output, and substitute human readable output for other for-
mats.

--no-pretty Opposite of --pretty.

ACTIONS ON SPECIFIED ATTRIBUTE GROUP(S)
list (ls)

List information about attribute group(s).

create (mk) name=NAME
Add an attribute group NAME.

clone (cp) name=NAME
Copy attribute group to new identifier NAME.

update (up)
Modify attribute group fields.

replace (re)
Replace all attribute group fields.

delete (rm)
Delete attribute groups.

get
Get attribute values.

set
Set attribute values.

clear
Clear attribute values.

EXAMPLES
scyld-attribctl create name=iScsi

Add a new attribute group.

scyld-attribctl -i iScsi set _boot_config=RebelBoot _boot_style=iscsi

Configure attributes to boot nodes using RebelBoot using iSCSI for root file system access.

RETURN VALUES
Upon successful completion, scyld-attribctl returns 0. On failure, an error message is printed to stderr and scyld-
attribctl returns 1.

126 Chapter 4. Administration

ICE ClusterWare Documentation, Release 12.4.0

4.19.7 Reserved Attributes
Within the ICE ClusterWare™ attribute system, administrators are encouraged to store whatever information they find
useful for labeling and customizing nodes. For ease of use, attributes names should be valid Javascript variable names,
i.e., meaning that they may begin with any uppercase or lowercase letter, followed by letters, digits, or underscores.
Names that start with an underscore are used by the ClusterWare software and should be set by administrators to affect
the behavior of the system. These will be referred to as system attributes throughout this discussion.

Attributes are stored internally as a Javascript dictionary mapping strings to strings, otherwise known as name-value
pairs. Administrator-defined attribute values should be strings and relatively small in size. The ClusterWare backend
database enforces some document size constraints, and collections of node attributes should be no more than tens to
hundreds of kilobytes in size. Individual attributes can be any length as long as the overall attribute group or node object
size does not exceed this limits. Generally, if a cluster configuration is approaching these sizes, a cluster administrator
pursue moving data from the database into shared storage locations referenced by database entries.

Attributes can be applied directly to nodes, but may also be collected into groups, and then these groups applied to sets
of nodes. Attributes passed to nodes through groups are treated no differently than those applied directly to a node.
Attribute groups help cluster administrators create more scalable and manageable configurations. See Node Attributes
for more details.

The remainder of this section is a list of system attributes describing their use and allowed values.

4.19.7.1 _aim_status

Default: none

Values: AIM status (qual, prod, fail, service, other) with an optional explanation string

Depends: none

The Assured Infrastracture Module uses this attribute to specify what a node is doing or to provide more detailed status
for node failures.

4.19.7.2 _altmacs

Default: none

Values: comma-separated list of MAC addresses

Depends: none

Nodes with bonded interfaces may send DHCP requests across different legs of the bond with no obvious pattern.
Alternative MAC addresses in this attribute will be added to the DHCP server to receive identical responses.

4.19.7.3 _ansible_pull

Default: none

Values: reference to an ansible git repo and a playbook in that repo

Depends: none

See Using Ansible for details about format and usage.

4.19.7.4 _ansible_pull_args

Default: none

Values: optional arguments for _ansible_pull

Depends: using _ansible_pull

Specify optional arguments for an _ansible_pull. See Using Ansible for details about format and usage.

4.19. Attribute Groups 127

ICE ClusterWare Documentation, Release 12.4.0

4.19.7.5 _ansible_pull_now

Default: none

Values: reference to an ansible git repo and a playbook in that repo

Depends: none

The cluster administrator must systemctl enable cw-ansible-pull-now and systemctl start
cw-ansible-pull-now. See Using Ansible for details about format and usage.

4.19.7.6 _bmc_pass

Default: none

Values: password to the node BMC

Depends: none

This attribute is not directly used within the ClusterWare software but is meant to be referenced in a power_uri such as
ipmi:///admin:<attributes[_bmc_pass]>@10.10.10.10. This attribute is masked by default so the password
will not be printed to the terminal by scyld-nodectl without the --no-pretty argument.

4.19.7.7 _bootloader

Default: none

Values: bootloader to install, currently only "grub"

Depends: _boot_style=disked

Setting this attribute while using a disked boot style will trigger code in the initramfs to install the requested bootloader
to the disk containing the partition that contains the /boot directory, append necessary entries into /etc/fstab based on
then-mounted partitions, set the _boot_style to sanboot, and reboot the system.

This option is commonly coupled with the _ignition attribute to provide partitioning and filesystem creation. Using
these attributes together allows for deploying images as persistent installations for infrastructure nodes.

4.19.7.8 _bootnet

Default: bootnet

Values: name for the system boot interface

Depends: none

By default, a system will rename whatever interface is used for network booting to "bootnet" but that name can be
changed by setting this attribute. Be careful not to use a name already in use on the target system.

4.19.7.9 _busy

Default: undefined (see below)

Values: boolean (case-insensitive 1/0, on/off, y/n, yes/no, t/f, true/false)

Depends: none

This attribute explicitly controls the behavior of the compute node's cw-status-updater service which periodically gath-
ers node state information every _status_secs seconds (default 10) and reports that information to its parent head node.

The cw-status-updater service can function in one of two ways:

• The default manner that gathers frequently changing state (e.g., uptime and load average) and occasionally
gathers (albeit more expensively) infrequently changing state information (e.g., what hardware is present and
which ClusterWare packages are currently installed), or

128 Chapter 4. Administration

ICE ClusterWare Documentation, Release 12.4.0

• A "busy mode" manner that severely reduces the scope of what information is gathered and reported. The service
in "busy mode" is minimally invasive to performance of real-time (especially multi-node) applications that are
sensitive to interruptions and to "jitter".

If _busy is undefined, then "busy mode" can be enabled or disabled by the presence or absence of /opt/scyld/
clusterware-node/etc/busy.flag, which can be created in a job scheduler prologue and delete in an epilogue, or
can be manually created and deleted.

If neither _busy and busy.flag are employed, then the compute node may itself heuristically determine on its own
whether or not to execute in "busy mode".

A compute node in "busy mode" reports that with scyld-nodectl status -l showing "busy: True".

A busy compute node requires --force to reboot.

4.19.7.10 _boot_config

Default: none

Values: boot configuration identifier

Depends: none

The _boot_config attribute defines what boot configuration a given node should should use. For a detailed discussion
of boot configurations and other database objects, please see Boot Configurations.

A boot configuration identifier may be a, possibly truncated, UID or a boot configuration name.

4.19.7.11 _boot_rw_layer

Default: overlayfs

Values: overlayfs, rwtab

Depends: _boot_style == roram or iscsi

Use _boot_rw_layer to control the type of overlay used to provide read/write access to an otherwise read-only root file
system image. The overlayfs provides a writable overlay across the entire file system, while the rwtab approach only
allows write access to the locations defined in /etc/rwtab or /etc/rwtab.d in the node image.

Note that prior to kernel version 4.9, overlayfs does not support SELinux extended attributes and so cannot be used
for compute nodes with SELinux in enforcing mode. The rwtab option does work with SElinux, but two additional
changes need to be made when enabling rwtab. First, the cluster administrator must modify the /etc/sysconfig/
readonly-root file in the node image to ensure READONLY is set to "yes":

READONLY=yes

Second, the kernel cmdline in the appropriate boot configuration must include "ro":

cmdline: enforcing=1 ro

4.19.7.12 _boot_style

Default: rwram

Values: rwram, roram, iscsi, disked, next, sanboot, live

Depends: none

Root file system images can be supplied to nodes through a variety of mechanisms, and this can be controlled on a
per-node basis through the _boot_style attribute. In both the rwram and roram modes, the node will download the
entire image into RAM and either unpack it into a tmpfs RAM file system (rwram) or apply a writable overlay (roram).
These boot styles have the advantage of post-boot independence from the head node, meaning that the loss of a head
node will not directly impact booted compute nodes.

4.19. Attribute Groups 129

ICE ClusterWare Documentation, Release 12.4.0

The iscsi option uses less RAM as the boot image is not downloaded into node RAM, but depends on the head node
even after the node is fully booted. Due to this dependence a head node crash may cause attached compute nodes to
hang and lose work. This approach requires a writable overlay, as the images may be shared between multiple nodes.

With the disked option, the node boots with images read from local storage. See Booting From Local Storage Cache
for details.

Use the next option to exit the boot loader and allow the BIOS to try the next device in the BIOS boot order. Since this
process depends on support in the BIOS, it may not work on every server model.

The sanboot option causes the booting node to boot using the iPXE sanboot command and defaults to booting the
first hard disk. Please see the _ipxe_sanboot attribute for more details.

The live option only works for ISO-based configurations, e.g., those used for kickstart. For supported ISOs (e.g., RHEL-
based) the node boots into the live installer, and the administrator needs to interact with it via the (likely graphical)
system console.

4.19.7.13 _boot_tmpfs_size

Default: half of RAM

Values: 1g, 2g, etc.

Depends: _boot_style == rwram or _boot_rw_layer == overlayfs

During the node boot process, a tmpfs is used to provide a writable area for diskless compute nodes. For the rwram boot
style this attribute controls the size of the root file system where the image is unpacked. When booting with overlayfs
on a roram or iscsi style, this attribute controls the size of the writable overlay.

4.19.7.14 _coreos_ignition_url

Default: none

Values: The URL of a RHCOS *.ign ignition file.

Depends: none

Both _coreos_ignition_url and _coreos_install_dev are attributes that must be set to fill in variables in the associated
boot config's cmdline. See Using RHCOS.

4.19.7.15 _coreos_install_dev

Default: none

Values: The device on the target node into which the image is installed.

Depends: none

Both _coreos_ignition_url and _coreos_install_dev are attributes that must be set to fill in variables in the associated
boot config's cmdline. See Using RHCOS.

4.19.7.16 _disk_cache

Default: none

Values: local partition name + optional encryption

Depends: none

Specifies a persistent location where the node can store downloaded images. This location should be a local partition
with sufficient size to hold a handful of compressed images.

130 Chapter 4. Administration

ICE ClusterWare Documentation, Release 12.4.0

If the specified location exists, then the node will retain there a copy of the downloaded image. During subsequent
boots the node will first compare the checksum of a file previously saved with the expected checksum provided by the
head node in order to avoid unnecessary downloads.

If the specified partition does not exist, then an error will be logged, although the node will download the image to
RAM and still boot. If the partition exists but cannot be mounted, then it will be reformatted.

Optionally Linux Unified Key Setup (LUKS) encryption can also be specified for the partition. Append :encrypt to
the partition name to encrypt with a random key, or append :encrypt=KEY to specify an encryption key.

If no key is specified, encryption is performed using standard LUKS tools with 128 bytes of data from /dev/urandom
stored in a key file used as the passphrase. This key file is only briefly stored in RAM and deleted shortly before an
Ext4 file system is created on the newly encrypted partition.

Alternatively, if the specified key is TPM then the random key will be stored in the booting system's Trusted Platform
Module (TPM) and deleted out of RAM shortly before the file system is created. The key can also be bound to specific
TPM Platform Configuration Register (PCR) values meaning that the TPM will not later reveal the key unless those
PCRs hold the same values. Since these values include hashes of the BIOS code, configuration, kernel, and other
boot-time binaries access to the encrypted partition can be restricted to specific boot-time configurations. If the TPM
has an owner password set it must be provided in the _tpm_owner_pass attribute.

ò Note

The cryptsetup-luks package must be installed in the image being booted.

Specifying a KEY is essentially necessary for _disk_cache because without that after a subsequent reboot the partition
contents will be lost as they were encrypted with an unknown random key.

For example:

scyld-nodectl -i n[0-63] set _disk_cache=/dev/nvme0n1p2:encrypt=Penguin

If _disk_cache is present but no _disk_root is provided, then if a roram-compatible image is downloaded, then the node
will boot directly from the cached image with a writable overlay.

s Important

Any data in the partition specified as a _disk_cache may be destroyed at boot time!

Similar to /etc/fstab, partitions can be identified by device path, UUID, PARTLABEL, or PARTUUID.

4.19.7.17 _disk_root

Default: none

Values: local partition name + optional encryption

Depends: ignored unless _boot_style == disked

Specifies a persistent location into which at boot time the node can unpack the root image. This will delete the contents
of the partition before unpacking the root image. If the specified partition does not exist, then an error will be logged,
although the node will still boot using the image unpacked into RAM.

Similar to _disk_cache, append :encrypt to the partition name to encrypt with a random key, or :encrypt=KEY to
specify the encryption key. For _disk_root a random key is preferable, as the _disk_root contents are intended to be
ephemeral across boots.

4.19. Attribute Groups 131

ICE ClusterWare Documentation, Release 12.4.0

s Important

All data in the partition specified as a _disk_root will be destroyed at boot time!

Similar to /etc/fstab, partitions can be identified by device path, UUID, PARTLABEL, or PARTUUID.

4.19.7.18 _disk_wipe

Default: none

Values: comma-separated list of local partition names + optional encryption

Depends: none

The listed partitions will be reformatted at every boot with an Ext4 file system. Similar to _disk_cache, append
:encrypt to the partition name to enable "encryption at rest", or :encrypt=KEY to specify the encryption key. Like
_disk_root the random key is preferable to ensure _disk_wipe partition contents are not retrievable from a physically
removed storage device.

4.19.7.19 _domain

Default: none

Values: a DNS domain name

Depends: none

Booting compute nodes will use this attribute when constructing their full names unless their _hostname attribute
already includes their domain.

4.19.7.20 _gateways

Default: The default gateway for the node's interfaces

Values: <ifname>=IPaddress

Depends: None

Override the interface ifname's current gateway value with an alternative IP address. For example, _gate-
ways=enpls0f0=10.20.30.40,enpls0f1=10.20.40.40.

4.19.7.21 _hardware_plugins

Default: 300

Values: Comma-separated list of hardware plugin modules

Depends: None

Specifies a list of hardware plugins that are added to the list that might be built into the disk image. If a plugin is listed
twice, the second listing will be silently ignored; if a plugin does not exist, it will be silently ignored; if a plugin returns
an error or outputs no data, it will be silently ignored.

Hardware information is assumed to be changing less frequently and results may be cached to further reduce the load
of the monitoring system.

132 Chapter 4. Administration

ICE ClusterWare Documentation, Release 12.4.0

4.19.7.22 _hardware_secs

Default: 300

Values: seconds between checking for status hardware changes

Depends: none

A node sends its hardware state (viewed with scyld-nodectl list --long and list --long-long) as a compo-
nent of its larger basic status information. See _status_secs below. This hardware component is typically only sent
once at boot time. However, the node periodically reevaluates its hardware state every _status_hardware_secs seconds,
and in the rare event that something has changed since it last communicated its hardware state to its parent head node,
then the node includes the updated hardware information in its next periodic basic status message.

Changes to this value are communicated to an up node without needing to reboot the node.

4.19.7.23 _health

Default: none

Values: node health status

Depends: none

Cluster administrators can use a health check tool that periodically executes on a compute node (see _health_check) and
relays the result back to the head node as a value of _health. The health check tool is expected to return a _health result
string in one of three forms: an integer value of seconds-since-epoch (generated by date +%s), a no-problems-detected
value of "healthy", or some other string that provides more details about a problem or problems encountered.

The scyld-nodectl tool can display the literal _health value doing:

scyld-nodectl -i n42 --fields attributes._health ls -l

Alternatively,:

scyld-nodectl status --health [--refresh]

and the ClusterWare GUI display a simple summary of the literal _health value. The seconds-since-epoch value is
displayed as "checking", the "healthy" value is displayed as "healthy", and any other value is displayed as "unhealthy".

The health check tool can set a custom _health value to provide more detailed information about the problem was was
discovered, e.g.,

_health="Sent back to Penguin with RMA #123456"

or

_health="GPU2 is unhealthy"

4.19.7.24 _health_check

Default: /opt/scyld/clusterware-node/bin/check-health-basic.sh

Values: path to health check tool on node

Depends: none

Cluster administrators use the _health_check attribute to specify the path to a script or binary executable that implements
the health check for display in the _health attribute (see _health). The default /opt/scyld/clusterware-node/bin/
check-health-basic.sh tool is duplicated on a head node as /opt/scyld/clusterware-tools/examples/
check-health-basic.sh to provide a prototype for the cluster administrator to copy and modify as desired, and

4.19. Attribute Groups 133

ICE ClusterWare Documentation, Release 12.4.0

then deploy to compute node(s), or to install into an image file or files, and then set _health_check for specified nodes
to point to the path of this alternative tool.

When a health check tool begins executing on the node, it should initially return a _health value of the current seconds
since epoch, e.g.,

set-node-attribs _health=$(date +%s)

The ClusterWare GUI and scyld-nodectl status --health both interpret this seconds-since-epoch value as "checking".
At completion of the health check, the "healthy", "unhealthy", or more elaborate string result should be sent back to
the head node in the using the same set-node-attribs _health=<value> mechanism.

4.19.7.25 _health_plugins

Default: None

Values: Comma-separated list of health plugin modules

Depends: None

Specifies a list of health plugins that are added to the list that might be built into the disk image. If a plugin is listed
twice, the second listing will be silently ignored; if a plugin does not exist, it will be silently ignored; if a plugin returns
an error or outputs no data, it will be silently ignored.

Health checks are assumed to be changing much less frequently and results may be cached to further reduce the load
of the monitoring system.

4.19.7.26 _health_secs

Default: 300

Values: Number of seconds between health-check runs

Depends: None

Specifies the time between successive health update cycles. During each cycle, every health plugin will be run.

4.19.7.27 _health_check_secs

default: 300

Depends: none

Values: seconds between executing the health check program

Depends: none

Specifies the interval in seconds for executing a health check program specified by the _health_check attribute. See
_health_check.

4.19.7.28 _hostname

Default: none

Values: Hostname or fully-qualified domain name

Depends: none

Booting compute nodes will assign the value of _hostname as their hostname using the hostnamectl command. If
the attribute value is a simple name (without periods), then the cluster domain will be appended to construct a FQDN.
Changes to this variable take effect on the next status update.

134 Chapter 4. Administration

ICE ClusterWare Documentation, Release 12.4.0

4.19.7.29 _hosts

Default: blank

Values: download

Depends: none

During the compute node boot process, a list of known hosts is downloaded from the head node and is appended to the
compute node's /etc/hosts. By default this will only append a list of head nodes to ensure that each compute node
can resolve all head nodes without DNS. If the _hosts attribute is set to 'fetch', then all compute node names and IP
addresses will be appended to /etc/hosts.

4.19.7.30 _ignition

Default: none

Values: A filename in the kickstarts/ folder

Depends: none

Compute node disks can be partitioned early in the boot process using the included ignition tool. Setting the _ignition
attribute instructs the booting node to download the ignition binary from the head node and then use it to download
the configuration named by the _ignition attribute. At different points in the boot process, ignition will execute its
fetch, kargs, disks, mount, and files stages. The ignition configuration file is not meant to be human readable or
editable so administrators are expected to write YAML files in the format that the butane tool can translate. If the
provided configuration file ends in .butane it will be converted automatically by the ClusterWare backend at the time
of download.

The ignition tool provides several other capabilites including the ability to mount the created partitions. Using the
_disk_root and _ignition attributes together an administrator can configure a node using the disked boot style with
directories such as /var, /usr, etc. on different partitions as required by government STIGs.

Additional documentation about ignition can be found at: https://coreos.github.io/ignition/

4.19.7.31 _ips

Default: none

Values: comma-separated IP assignments

Depends: none

Compute nodes commonly define additional high-speed network interfaces other than the PXE boot network. These
interfaces are commonly defined by ifcfg-XXX files located in /etc/sysconfig/network-scripts and differ between nodes
only in the assigned IP address. Use the _ips attribute to specify what IP address should be assigned to an individual
node on one or more interfaces. For example, a value of _ips=eno0=10.10.23.12,ib0=192.168.24.12 would cause
the prenet/write_ifcfg.sh startup script to replace any IPADDR= line in /etc/sysconfig/network-scripts/ifcfg-ib0 with
IPADDR=192.168.24.12 and would similarly modify the adjacent ifcfg-en0 file, replacing any IP assignment in that
file with IPADDR=10.10.23.12.

You can also specify a bmc= value as a special accepted interface. The BMC interface is not otherwise listed on a
system, but is a recognized value for the _ips attribute. For details, see Providing DHCP to Additional Interfaces.

4.19.7.32 _ipxe_sanboot

Default: none

Values: local disk or partition

Depends: _boot_style == sanboot

4.19. Attribute Groups 135

https://coreos.github.io/ignition/

ICE ClusterWare Documentation, Release 12.4.0

Use this attribute to cause a node to boot using the iPXE sanboot command. This is most commonly used to boot
a locally installed disk, although administrators are cautioned to be extremely careful with stateful compute nodes as
they will retain modifications from previous boots, leading to an unexpectedly heterogeneous cluster.

Nodes with this attribute set will not download an image from the head node and will instead boot based on the URL or
other iPXE sanboot arguments provided. Please see the iPXE documentation for the details of what iPXE provides:
http://ipxe.org/cmd/sanboot

In addition to the arguments and URLs supported by iPXE, the ClusterWare platform also accepts a shorter URL for
booting local disks of the form local://0xHHwhere 'HH' is a hexadecimal value specifying a local hard disk. The first
disk is identified as 0x80, the second is 0x81, and so on. The provided hexadecimal value is then used in a sanboot
--no-describe --drive 0xHH call.

4.19.7.33 _macs

Default: The default MAC address for each of the node's interfaces

Values: <ifname>=<MACaddress>

Depends: None

Override the interface ifname's current MAC address with an alternative value. For example,
_macs=bond0=aa:bb:cc:dd:ee:ff. Generally only used for bonded interfaces. Ignored for the booting interface
bootnet.

You can also specify a bmc= value as a special accepted interface. The BMC interface is not otherwise listed on a
system, but is a recognized value for the _macs attribute. For details, see Providing DHCP to Additional Interfaces.

4.19.7.34 _no_boot

Default: false

Values: boolean equivalents (0 / 1, true / false, t / f, yes / no, y / n)

Depends: none

The _no_boot attribute controls whether information about a node is provided to the DHCP server. Any node with
_no_boot set to true will not receive DHCP offers from any ClusterWare head node. This allows an administrator to
temporarily remove a node from the cluster.

4.19.7.35 _preferred_head

Default: none

Values: head node UID

Depends: none

In a multihead configuration any head node can provide boot files to any compute node in the system. In most cases
this is a desirable feature because the failure of any given head node will not cause any specific set of compute nodes to
fail to boot. In some cases the cluster administrator may want to specify a preference of which head node should handle
a given compute node. By setting a compute node's _preferred_head attribute to a specific head node's UID, all head
nodes will know to point that node toward the preferred head node. This is implemented during the boot process when
the iPXE script is generated and passed to the compute node. This means that any head node can still supply DHCP, the
iPXE binaries, and the iPXE boot script, but the subsequent kernel, initramfs, and root file system files will be provided
by the preferred head node, and thereafter the node's boot status information will be sent to that _preferred_head.

136 Chapter 4. Administration

http://ipxe.org/cmd/sanboot

ICE ClusterWare Documentation, Release 12.4.0

4.19.7.36 _remote_pass

Default: none

Values: node account password for _remote_user attribute

Depends: none

Supports an alternative to the customary ClusterWare ssh-key functionality. It is useful to support scyld-nodectl
exec to non-ClusterWare compute nodes which do not have clusterware-node installed, but which do accept
user/password authentication.

To use, install the sshpass RPM on the head node. Set the _remote_pass attribute to the password of the _remote_user
attribute user name (default root). Subsequent executions of scyld-nodectl exec to nodes that are set up with this
attribute will employ this user/password pair to authenticate access to those target node(s).

ò Note

Use of sshpass is discouraged and is not a best practice. A clear text password is a significant security risk.

4.19.7.37 _remote_user

Default: root

Values: node account name

Depends: none

The _remote_user attribute controls what account is used on the compute node when executing the scyld-nodectl
reboot/shutdown commands. Please ensure the specified account can execute sudo shutdown without a password
or soft power control will not work. Similarly the scyld-nodectl exec and scyld-nodectl ssh commands will
also use the specified remote user account and the boot-time script that downloads head node keys will store those keys
in the _remote_user's authorized_keys file.

4.19.7.38 _sched_extra

Default: None

Values: short line of text with a bit more information on the state of the scheduler

Depends: sched_watcher service must be running on the cluster

Gives one line of information on the current state of the node with respect to the scheduler. E.g. if a node is down, it
may include whether the node could be pinged, or whether the scheduler-daemon on the node was found.

Note: _sched_extra is a "technology preview" and may change or be replaced in the future.

4.19.7.39 _sched_full

Default: None

Values: JSON table of information

Depends: sched_watcher service must be running on the cluster

Specifies all the information known about the current state of the node with respect to the scheduler. E.g. it may report
the number of CPUs or memory seen by the scheduler; or any additional resources (like GPUs) that were found on the
system.

Note: _sched_full is a "technology preview" and may change or be replaced in the future.

4.19. Attribute Groups 137

ICE ClusterWare Documentation, Release 12.4.0

4.19.7.40 _sched_state

Default: None

Values: one of unknown, down, idle, or allocated

Depends: sched_watcher service must be running on the cluster

Specifies the current state of the node with respect to the scheduler, e.g. Slurm.

Note: _sched_state is a "technology preview" and may change or be replaced in the future.

4.19.7.41 _status_cpuset

Default: all available CPUs

Values: list of one or more CPU numbers

Depends: none

When a compute node boots, the status-updater and related child processes can execute by default on any of the
node's CPUs, as chosen by the kernel's scheduler. The administrator may instead choose to restrict which CPUs these
processes use to be a subset of all CPUs, or even to just a single CPU, in order to minimize the impact that these
processes may have on a time-critical application(s) executing on the other CPUs.

The _status_cpuset value is a list of CPUs to use. For example, set _status_cpuset=0 restricts the processes to
just CPU 0, set _status_cpuset="0-1" restricts to CPUs 0 and 1, and set _status_cpuset="0-1,4" restricts
to CPUs 0, 1, and 4. See man 7 cpuset for details.

4.19.7.42 _status_hardware_secs

Default: 300

Values: seconds between checking for status hardware changes

Depends: none

A node sends its hardware state (viewed with scyld-nodectl list --long and list --long-long) as a com-
ponent of its larger basic status information. See _status_secs above. This hardware component is typically only sent
once at boot time. However, the node periodically reevaluates its hardware state every _status_hardware_secs seconds,
and in the rare event that something has changed since it last communicated its hardware state to its parent head node,
then the node includes the updated hardware information in its next periodic basic status message.

Changes to this value are communicated to an up node without needing to reboot the node.

4.19.7.43 _status_packages_secs

Default: 0

Values: seconds between checking for installed packages changes

Depends: none

The time interval in seconds between the relatively expensive search for what ClusterWare packages are installed. This
value times 10 is the time interval between the even more expensive calculations of a sha256sum hash of the sorted
list of names of all installed packages, distilled into a single hexidecimal value. These values are seen by executing
scyld-nodectl -i<nodes> status -L on the head node.

A non-zero value should be longer than the _status_secs value, described below.

If the value is zero, then these packages searches and calculations are done just at node boot time, and additionally when
(and if) the administrator executes /usr/bin/update-node-status --hardware on a compute node. Such run-
time changes to a node's installed packages are relatively rare, so the default value is zero to minimize the performance
impact of these operations.

138 Chapter 4. Administration

ICE ClusterWare Documentation, Release 12.4.0

Changes to this value are communicated to an up node without needing to reboot the node.

4.19.7.44 _status_plugins

Default: None

Values: Comma-separated list of status plugin modules

Depends: None

Specifies a list of status plugins that are added to the list that might be built into the disk image. If a plugin is listed
twice, the second listing will be silently ignored; if a plugin does not exist, it will be silently ignored; if a plugin returns
an error or outputs no data, it will be silently ignored.

4.19.7.45 _status_secs

Default: 10

Values: seconds between status updates

Depends: none

Booted compute nodes periodically send basic status information to their parent head node. This value controls how
often these messages are sent. Although the messages are relatively small, clusters with more compute nodes per head
node will want to set this to a longer period to reduce load on the compute nodes.

Changes to this value are communicated to an up node without needing to reboot the node.

4.19.7.46 _telegraf_omit_pattern

Default: (_sched_full|_telegraf_omit_pattern)

Values: regex matching pattern (awk rules)

Depends: None

Specifies a pattern to match for the Telegraf cw-attribs plugin. Any compute node attributes or fields that match the
pattern will be omitted from the Telegraf data-stream (all remaining fields and attributes will be included).

4.19.7.47 _telegraf_plugins

Default: None

Values: Comma-separated list of Telegraf plugin modules

Depends: None

Specifies a list of Telegraf plugins that are added to the list that might be built into the disk image. If a plugin is listed
twice, the second listing will be silently ignored; if a plugin does not exist, it will be silently ignored.

The Telegraf/Grafana system is used for whole system monitoring and trending, and is not directly integrated with other
Clusterware tools (scyld-nodectl will not report on Telegraf data).

Changing _telegraf_plugins will cause a restart of Telegraf on the node.

4.19.7.48 _tpm_owner_pass

Default: none

Values: Owner password for the compute node TPM

Depends: none

Certain TPM commands require authentication using the "owner" TPM password. This means that the clear-text pass-
word must be provided to systems using the TPM for disk encryption via this attribute.

4.19. Attribute Groups 139

ICE ClusterWare Documentation, Release 12.4.0

4.20 Naming Pools Page
Naming pools are used to support multiple name groupings within the ICE ClusterWare™ platform. Naming pools are
useful in complex clusters where you want to identify compute nodes based on core capablities. For details, see Node
Names and Pools.

Use the Naming Pools page to create and manage naming pools. The page is available via Nodes > Naming Pools in
the left navigation panel.

4.20.1 Create a Naming Pool
To create a naming pool:

1. Click Add Naming Pool.
2. Add details about the naming pool.

• Name: Required.

• Description: Optional.

• Pattern: Optional.

• First Index: Optional.

• Parent Group: Optional. Select a parent group from the list of available groups.

• IP Base: Available if a parent group is selected.

• Network: Available if no parent group is selected.

• Group: Available if no parent group is selected.

• Offset: Available if no parent group is selected.

3. Click Add Naming Pool to save your changes.

The new naming pool appears in the list at the top of the page.

4.20.2 Edit Naming Pool
To edit a naming pool:

1. Click the naming pool name to open the details panel.

2. Click the edit icon (pencil) to enable changes.

3. Make updates to the naming pool.

4. Click Update to save your changes.

140 Chapter 4. Administration

ICE ClusterWare Documentation, Release 12.4.0

4.20.3 Delete Naming Pool
To delete a naming pool, click the ellipsis (...) on the far right of the row and select the Delete action.

4.20.4 Change Default Naming Pattern
If no other naming pool is associated with a node, the default naming pattern is used. At system installation time,
the default naming pattern is n{}. Use Default naming pattern to update the cluster settings with a different default
naming pattern.

4.20.5 Related Links
• Node Names and Pools

• scyld-clusterctl

4.21 Node Names and Pools
By default all compute nodes are named nX, where X is a numeric zero-based node index. This pattern can be changed
using "nodename" lines found in a cluster configuration file. For example, a line nodename compute{} early in such
a file will change the default node naming to computeX. This changes both the default node hostnames as well as the
names recognized by the scyld-nodectl command.

For homogeneous clusters where all compute nodes are essentially the same, this is usually adequate, although in more
complex environments there is utility in quickly identifying core compute node capabilities reflected by customized
hostnames. For example, high memory nodes and general purpose GPU compute nodes could be named "hmX" and
"gpgpuX". These names can be assigned via the _hostname attribute as described in Reserved Attributes, although the
scyld-nodectl command will still refer to them as "nX".

To support multiple name groupings within the scyld-*ctl tools, the ICE ClusterWare™ system includes the con-
cept of a naming pool. These pools are defined and modified through the scyld-clusterctl pools command line
interface. Once the appropriate pools are in place, then compute nodes can be added to those pools. For example:

scyld-clusterctl pools create name=high_mem pattern=hm{} first_index=1
scyld-clusterctl pools create name=general_gpu pattern=gpgpu{} first_index=1
scyld-nodectl -in[37-40] update naming_pool=high_mem
scyld-nodectl -in[41,42] update naming_pool=general_gpu

After these changes the scyld-nodectl status and scyld-nodectl ls output includes the specified nodes as
"hm[1-4]" and "gpgpu[1-2]". Any commands that previously used "nX" names now accept "hmX" or "gpgpuX" names
to refer to those renamed nodes. The first_index= field of the naming pool forces node numbering to begin with
a specific value, defaulting to 0. Any nodes not explicitly attached to a naming pool use the general cluster naming
pattern controlled through the scyld-clusterctl --set-naming PATTERN command. This can be considered the
default naming pool.

4.21.1 Node Indexing and Grouping in Naming Pools

s Important

When moving multiple compute nodes from one naming pool to another, the node order may not be preserved.
Instead, moving them individually, or specifying their MAC addresses in a cluster configuration file, may be more
predictable.

When moving a node from one naming pool to another via the scyld-nodectl command, the node index is reset to
the next available index in the destination pool. Using an explicit index=X argument allows the cluster administrator

4.21. Node Names and Pools 141

ICE ClusterWare Documentation, Release 12.4.0

to directly control the node renumbering. Note that nodes in different naming pools may have the same index, so in this
configuration the index is no longer a unique identifier for individual nodes. Further, the --up, --down, --all node
selectors are not restricted to a single naming pool and will affect nodes in all pools that match the selection constraint.
Nodes in scyld-nodectl output are ordered by index within their naming pool, although the order of the naming
pools themselves is not guaranteed. For example:

[admin@head clusterware]$ scyld-nodectl ls
Nodes
n1
n2
n3
n4
n5
login6
login7
login8
login9

Similarly, the nodes are grouped by naming pool in scyld-cluster-conf save output with "nodename" lines and
explicit node indices inserted as needed:

[admin@head clusterware]$ scyld-cluster-conf save -
Exported Scyld ClusterWare Configuration file
#
This file contains the cluster configuration.
Details of the syntax and semantics are covered in the
Scyld ClusterWare Administrators Guide.
#
nodename n{}

10.10.24.0/24 network
domain cluster.local
1 10.10.24.101/24 10.10.24.115
node 1 00:00:00:00:00:01 # n1
node 00:00:00:00:00:02 # n2
node 00:00:00:00:00:03 # n3
node 00:00:00:00:00:04 # n4
node 00:00:00:00:00:05 # n5
nodename login{}
node 6 00:00:00:00:00:06 # login6
node 00:00:00:00:00:07 # login7
node 00:00:00:00:00:08 # login8
node 00:00:00:00:00:09 # login9

The organization of node naming pools is intentionally independent of node networking considerations. The cluster
administrator can combine these concepts by creating separate naming pools for each network segment, although this
is not necessary.

Secondary DNS names can also be defined using "nodename":

nodename <pattern> <ip> [pool_name]

A "nodename" line containing an IP address (or IP offset such as "0.0.1.0") can define a name change at an offset within
the IP space or define a secondary DNS name depending on whether the IP is within a defined network. For example:

142 Chapter 4. Administration

ICE ClusterWare Documentation, Release 12.4.0

iprange 10.10.124.100/24 10.10.124.250
node
node 08:00:27:F0:44:35 # n1 @ 10.10.124.101

nodename hello{}/5 10.10.124.105
node 08:00:27:A2:3F:C9 # hello5 @ 10.10.124.105

nodename world{}/10 10.10.124.155
node 12 08:00:27:E5:19:E5 # world12 @ 10.10.124.157

nodename n%N-ipmi 10.2.255.37 ipmi
world12 maps to n2-ipmi @ 10.2.255.39

nodename world%N-ipmi/10 10.2.254.37 ipmi
world12 maps to world12-ipmi @ 10.2.254.39

Note that the "<pattern>/X" syntax defines the lowest node index allowed within the naming pool.

4.21.2 Secondary Naming Pools
The ClusterWare platform provides a mechanism to include name resolution for non-management interfaces with pre-
dictable IP addresses on existing pools of nodes. You can create secondary naming pools via a configuration file or via
the ClusterWare command line tools.

4.21.2.1 Configuration File

The following configuration file uses the default n{} node naming convention, but also includes a secondary naming
pool labelled ib0.

iprange 10.54.50.0/24
node 52:54:00:c6:c3:0a
node 52:54:00:c4:f7:1e
node 52:54:00:46:fe:99
node 52:54:00:dc:f2:e5
node 52:54:00:de:b3:5e
node 52:54:00:17:e7:be
node 52:54:00:48:05:f4
node 52:54:00:88:0f:82

nodename n{}-ib0 0.+1.0.0 ib0

When this configuration is loaded, the system resolves the following through both dnsmasq and scyld-nss:

• Names n0 through n7

• Names n0-ib0 through n7-ib0 where those -ib0 addresses are offset into the 10.55.50.0/24 network based on the
provided specification (0.+1.0.0)

For example, n0 resolves to 10.54.50.0 and n0-ib0 resolves to 10.55.50.0.

4.21.2.2 Command Line Tools

Secondary naming pools can also be created via the following command:

scyld-clusterctl pools create name=ib1 parent= pattern=n{}-ib1 ip_base=10.55.50.0

4.21. Node Names and Pools 143

ICE ClusterWare Documentation, Release 12.4.0

Where:

• The parent argument should generally be the name of a primary naming pool. However, the default cluster
naming is not recorded as a primary naming pool. Instead, it is stored and retrieved using scyld-clusterctl
--set-naming <PATTERN> / --get-naming. Specifying an empty parent value in this command refers to
that default cluster naming.

• The pattern argument is formatted the same as any other ClusterWare naming pattern.

• The ip_base argument denotes the first IP in the pool and must be explicitly defined rather than using an offset
as is supported in configuration files.

After creating the secondary naming pool, the system resolves offset addresses for the secondary interface correspond-
ing to any nodes in the referenced parent pool.

4.22 Boot Configurations Page
The Boot Configurations page is available by clicking Provisioning + SW > Boot Configs in the left navigation panel.
The page shows a summary list of each boot configuration, its associated kernel release, and image name, the command
line to send to each booting kernel, and optionally the repo name and kickstart name.

4.22.1 Create Boot Configuration
To create a boot configuration:

1. Click Add Boot Configuration.

2. Add details about the boot configuration.

• Name: Required.

• Description: Optional.

• Image: Optional. Name of an existing image.

• cmdline: Optional. Specify the command provided to the kernel as it is booting. The value can be any
string, though key=value pairs are typical. For example, provide a command to modify power management
settings or serial console settings.

• Kickstart: Optional. Provide a Kickstart file to configure how the node is initialized at boot time. See
Using Kickstart for details.

144 Chapter 4. Administration

ICE ClusterWare Documentation, Release 12.4.0

• Frozen: Optional. When enabled, the boot configuration cannot be modified via the GUI or command line.
See Freezing a Boot Configuration for details.

3. Click Add/Edit Boot Configuration to save your changes.

The new boot configuration appears in the list at the top of the page.

4.22.2 Edit Boot Configuration
To edit a boot configuration:

1. Click the ellipsis (...) on the far right of the row and select the Edit action. The Add/Edit Boot Configuration
pane populates with the boot configuration's details.

2. Make updates to the boot configuration.

3. Click Add/Edit Boot Configuration to save your changes.

4.22.3 Delete Boot Configuration
To delete a boot configuration, click the ellipsis (...) on the far right of the row and select the Delete action.

4.22.4 Related Links
• Create Boot Configuration with Kickstart

• scyld-add-boot-config

4.23 scyld-add-boot-config
NAME
scyld-add-boot-config -- Tool for creating ClusterWare boot configurations.

USAGE
scyld-add-boot-config

[-h] [-v] [-q] [-c | --config CONFIG] [--base-url URL] [[-u | --user] USER[:PASSWD]]
[--make-defaults] [--distro NAME] [--image NAME] [--iso PATH] [--boot-config NAME]
[--attrib-group NAME] [--batch] [--interactive]

OPTIONAL ARGUMENTS
-h, --help Print usage message and exit. Ignore trailing args, parse and ignore preceding

args.

-v, --verbose Increase verbosity.

-q, --quiet Decrease verbosity.

-c, --config CONFIG Specify a client configuration file CONFIG.

--make-defaults If there are no attribute groups on this system, then automatically build an attribute
group referencing a new boot configuration referencing a new image.

--distro NAME Select the pre-existing distro NAME to use when creating an image.

--iso PATH Create a repo and distro from the local or remote base distribution ISO, where
PATH is a pathname or a URL.

--image NAME Select the pre-existing image NAME this command should use.

--boot-config NAME Name the boot configuration as NAME.

4.23. scyld-add-boot-config 145

ICE ClusterWare Documentation, Release 12.4.0

--attrib-group NAME Name the new attribute group as NAME.

--batch Run this command using the default options.

--interactive Run this command interactively.

ARGUMENTS TO OVERRIDE BASIC CONFIGURATION DETAILS
--base-url URL Specify the base URL of the ClusterWare REST API.

-u, --user USER[:PASSWD]
Masquerade as user USER with optional colon-separated password PASSWD.

EXAMPLES
This tool is used internally by the scyld-install tool to populate the initial (or cleared) database with the objects nec-
essary to boot compute nodes. When run on a database with no attribute groups defined and passed the --auto-first
argument this script will not ask the user any questions and will use default values. This should not be necessary for
an administrator to run unless they have manually cleared the database using the managedb clear command:

scyld-add-boot-config --make-defaults

Rebuild the DefaultImage and DefaultBoot.

scyld-add-boot-config --iso Rocky-9.5-x86_64-dvd.iso

Use the named ISO file to build a distro and repo named Rocky-9.5-x86_64-dvd, and manually accept defaults that
create a boot image and boot configuration, all named Rocky-9.5-x86_64-dvd.

scyld-add-boot-config --iso Rocky-9.5-x86_64-dvd.iso \
--image Rocky-9.5-Image --boot-config Rocky-9.5-boot --batch

Use the named ISO file in hands-off batch mode to build a repo and distro, both named Rocky-9.5-x86_64-dvd, a boot
image named Rocky-9.5-Image and a boot config named Rocky-9.5-boot.

RETURN VALUES
Upon successful completion, scyld-add-boot-config returns 0. On failure, an error message is printed to stderr and
scyld-add-boot-config returns 1.

4.24 scyld-* Wrapper Scripts
When creating a new boot image, it's common to create a corresponding boot configuration and assign that configuration
to a set of nodes. The scyld-add-boot-config tool wraps scyld-modimg, scyld-mkramfs, and the appropriate
scyld-*ctl tools to perform the necessary steps. The tool also optionally displays the required steps so you can learn
about the usage of the underlying tools.

When executed with no arguments, the scyld-add-boot-config script asks a series of questions to define the various
fields of the boot configuration, image, and attribute group that are being created. Default values are provided where
possible.

s Important

The default kernel command line sets SELinux on the compute nodes to permissive mode.

146 Chapter 4. Administration

ICE ClusterWare Documentation, Release 12.4.0

4.25 Boot Configurations
The scyld-install script creates a basic boot configuration named DefaultBoot that references the initial DefaultIm-
age and is initially associated with all compute nodes. After installation, you can customize that configuration and/or
create additional boot configurations and compute node images.

Modify configuration fields using the scyld-bootctl tool. For example, you can change the name and description of the
newly created boot configuration on a freshly installed system using the update argument:

scyld-bootctl -i DefaultBoot update name="NewName" description="New description"

The kernel and initramfs are also set using the same command, although their paths must be prefixed with @ (which
signifies that what follows is a local file path). For example:

scyld-bootctl -i DefaultBoot update kernel=@/boot/vmlinuz-3.10.0-862.el7.x86_64

Other database objects (nodes, images, etc.) are modified using similarly named tools (scyld-nodectl and
scyld-imgctl). Each node is associated with a specific boot configuration through its _boot_config attribute. Like
other attributes, this field may be inherited from an attribute group (including the global default attribute group) or set
directly on the node. Learn more about manipulating node attributes in Interacting with Compute Nodes.

Boot configurations also contain two more fields: release and boot_style. The release field is not editable and is
populated by the system whenever the kernel file is uploaded, based on the Linux file command output. The boot_style
dictates how the nodes receive the root file system, although it can be overridden by the _boot_style attribute set at the
node level or in any attribute groups used by the node. See Reserved Attributes for details. The possible values for
boot_style are rwram (default), roram, iscsi, disked, live, next, and sanboot.

• rwram is the default value. It instructs the system to download the compressed image into compute node RAM
where the mount_rootfs script unpacks it during the boot process.

• If the roram option is provided, the script downloads a squashfs image into compute node RAM, combines this
with a writable tmpfs via overlayfs, and boots using that combined file system.

• The iscsi option instructs the node to mount a read-only image via iSCSI and apply a writeable overlay.

• The disked option allows a node with local storage to both employ a node-local persistent cache to retain down-
loaded images and unpack images onto a node-local partition. Using a cache avoids the need to download images
at boot time, and booting from a local partition frees the RAM that would otherwise hold the compute node image.
See Booting From Local Storage Cache for details.

• The live and next options are most useful when kickstarting locally installed nodes. The live option can be
applied to a boot configuration that points to a repo based on an uploaded Rocky or RHEL ISO. Nodes booted
live from such a configuration use the kernel and initramfs from the ISO with an inst.repo kernel option to
boot into the ISO's Anaconda-based installer. Given access to the node console, you can manually install to the
local disk, thereby generating a kickstart file that can be used to reinstall this or similar nodes at a later time. The
BIOS of such kickstarted nodes should be configured to boot from the network and then from local disk. In this
configuration the next boot style should cause the compute node(s) to initially attempt to PXE boot, but then fail
and try to boot their local disk. See Using Kickstart for details about kickstarting locally installed nodes.

When booting a compute node into either a kickstart or live configuration, certain Anaconda options can be
provided on the command line through the cmdline field in the boot config or node. For example, if the inst.
sshd option is included on the cmdline when a node uses a boot configuration made from an ISO-based repo,
then you can log into the node during a "live" boot or during the node kickstart process. Be aware that there is
no root password required by default, but it can be set in a kickstart file.

Similarly, the inst.vnc Anaconda argument tells the booting node to start a VNC server to monitor the kickstart
process or click through a manual install.

4.25. Boot Configurations 147

ICE ClusterWare Documentation, Release 12.4.0

See https://anaconda-installer.readthedocs.io/en/latest/boot-options.html for documentation and additional op-
tions.

• Depending on BIOS details, some locally installed systems will not properly handle the next boot style and will
halt instead of failing over to another boot device. In that case, the sanboot option can be used to trigger booting
of the first partition of the first disk. The sanboot option behavior is customized using the _ipxe_sanboot attribute
described in Reserved Attributes.

You can override the boot_style setting for an individual or group of nodes by assigning a _boot_style attribute. Sim-
ilarly, to avoid overlayfs and use the rwtab approach to providing write capabilities to read-only root file systems, set
the _boot_rw_layer attribute of a node or attribute group to rwtab.

4.25.1 Create Local Repo
ISO images of the installation DVDs for RHEL-family (see Supported Distributions and Features) systems can be
downloaded from their respective websites and imported into the ICE ClusterWare™ software as repos using the
scyld-clusterctl repos command. For example:

scyld-clusterctl repos create name=Rocky8repo iso=@Rocky-8.7-x86_64-dvd1.iso

Once the upload completes, the ISO will be automatically forwarded to all head nodes and will be locally mounted on
each. Below are the repository details immediately after the upload completes:

[cwadmin@virthead]$ scyld-clusterctl repos -i Rocky8repo ls -l
Repos
Rocky8repo
iso
chksum: e47d5ca236a3152d63814b32081a1a3261dd1cf4
filename: 4aceb9db1aef4670be82bf49855b514a
mtime: 2023-01-31 23:07:36 UTC (0:08:31 ago)
size: 11.3 GiB (12129927168 bytes)

isolabel: Rocky-8-7-x86_64-dvd
keys: []
name: Rocky8repo
urls
<BASE_URL>/isomount/Rocky8repo/BaseOS/
<BASE_URL>/isomount/Rocky8repo/AppStream/

The ClusterWare platform displays URLs for the repositories identified on the ISO. For example, there is a repos-
itory in the root of the uploaded Rocky-8 ISO, accessible at <BASE_URL>/isomount/Rocky8repo/BaseOS/. The
<BASE_URL> tag is used as a placeholder to signify that any head node can provide access. When using such a URL,
replace the <BASE_URL> with the actual head node's base URL, e.g., http://10.20.30.30/api/v1/isomount/
Rocky8repo/BaseOS/<target-file>

The ISO can also be downloaded using the scyld-clusterctl command:

scyld-clusterctl repos -i Rocky8repo download iso

Just like URL defined repos, repos created using ISOs can be referenced in distros. See Creating Images in Boot
Configurations in this guide for details about using repos and distros to create compute node images.

4.25.2 Create Boot Configuration with Kickstart
In addition to providing content for distros, repos based on RHEL-family ISO images can also be used to kickstart
locally installed compute nodes. To prepare a kickstart configuration, create a boot configuration that references the
repo directly:

148 Chapter 4. Administration

https://anaconda-installer.readthedocs.io/en/latest/boot-options.html

ICE ClusterWare Documentation, Release 12.4.0

scyld-bootctl create name=Rocky8boot repo=Rocky8repo kickstart=basic.ks

The resulting boot configuration will automatically locate the kernel and initramfs on the ISO and default to using no
image:

[cwadmin@virthead]$ scyld-bootctl -i Rocky8boot ls -l
Boot Configurations
Rocky8boot
image: none
initramfs: repo:images/pxeboot/initrd.img
kernel: repo:images/pxeboot/vmlinuz
kickstart: basic.ks
last_modified: 2023-01-31 23:27:08 UTC (0:00:13 ago)
name: Rocky8boot
release: 4.18.0-425.3.1.el8.x86_64
repo: Rocky8repo

Initially this boot configuration can be used to boot a disked node with the live boot style assigned either by the boot
configuration boot_style field or a _boot_style node attribute. When live booting a node, the cluster administrator will
need to access the node's console to proceed through the operating system installation steps. To use the serial-over-lan
BMC feature, the administrator may need to provide an appropriate console= cmdline, e.g.:

scyld-bootctl -i Rocky8boot update cmdline=console=ttyS0,115200

The specific details of the console and other command line arguments depend on the target hardware and are beyond
the scope of this document. Once the installation process is complete, the compute node should use a next boot style in
order to skip the PXE boot process and instead boot from the next boot device. Cluster administrators are encouraged
to configure the BIOS of locally installed compute nodes to attempt PXE boot first and then boot from the local disk
so that the next boot style works as intended.

4.25.3 scyld-mkramfs
NAME
scyld-mkramfs -- Tool to create an initial root file system image.

USAGE
scyld-mkramfs

[-h] [OPTION] ... `` ``-o, -output PATH

STANDARD OPTIONS
-h, --help Print usage message and exit. Ignore trailing args, parse and ignore preceding

args.

--update, -u BOOT Space-separated list of boot configurations to update.

--output, -o PATH Where to write the initramfs.

--image, -i IMGID Uses scyld-modimg to install the clusterware-tools package inside the image
IMGID, and then executes scyld-mkramfs inside the image to create the root
file system image.

--kver VERSION Specify the kernel version to use, overriding the default of the head node's current
kernel (viewed with uname -r).

ADVANCED OPTIONS

4.25. Boot Configurations 149

ICE ClusterWare Documentation, Release 12.4.0

--stripped Exclude all network drivers not loaded on some node.

--drivers NAMES Space-separated list of additional kernel drivers to include.

--modules NAMES Space-separated list of additional dracut modules to include.

--ramfs-conf PATH Use a config file from a non-standard location PATH.

--base-url URL Specify the base URL of the ClusterWare REST API.

EXAMPLES
scyld-mkramfs --update OpenMPI-Slurm-Boot

Rebuild the initramfs used by the OpenMPI-Slurm-Boot boot configuration.

scyld-mkramfs --update OpenMPI-Slurm-Boot --drivers mlx4_core

Rebuild the initramfs used by the OpenMPI-Slurm-Boot boot configuration after adding the mlx4_core
driver (and its dependencies).

scyld-mkramfs --update OpenMPI-Slurm-Boot --kver 3.10.0-1160.45.1.el7.x86_64

Rebuild the initramfs in the boot config after an administrator installs a new kernel into the image that the
boot config is using. The --kver argument is needed if there are multiple kernels installed in the image.

RETURN VALUES
Upon successful completion, scyld-mkramfs returns 0. On failure, an error message is printed to stderr and scyld-
mkramfs returns 1.

4.25.4 scyld-bootctl
NAME
scyld-bootctl -- Query and modify boot configurations for the cluster.

USAGE
scyld-bootctl

[-h] [-v] [-q] [[-c | --config] CONFIG] [--base-url URL] [[-u | --user] USER[:PASSWD]]
[--human | --json | --csv | --table] [--pretty | --no-pretty] [--show-uids] [-a |
-i BOOTGROUPS] {list,ls, create,mk, clone,cp, update,up, replace,re, delete,rm,
download, export, import, mkiso}

OPTIONAL ARGUMENTS
-h, --help Print usage message and exit. Ignore trailing args, parse and ignore preceding

args.

-v, --verbose Increase verbosity.

-q, --quiet Decrease verbosity.

-c, --config CONFIG Specify a client configuration file CONFIG.

--show-uids Do not try to make the output more human readable.

-a, --all Interact with all boot configurations (default for list).

-i, --ids BOOTGROUPS A comma-separated list of boot configurations to query or modify.

ARGUMENTS TO OVERRIDE BASIC CONFIGURATION DETAILS
--base-url URL Specify the base URL of the ClusterWare REST API.

-u, --user USER[:PASSWD]
Masquerade as user USER with optional colon-separated password PASSWD.

150 Chapter 4. Administration

ICE ClusterWare Documentation, Release 12.4.0

FORMATTING ARGUMENTS
--human Format the output for readability (default).

--json Format the output as JSON.

--csv Format the output as CSV.

--table Format the output as a table.

--pretty Indent JSON or XML output, and substitute human readable output for other for-
mats.

--no-pretty Opposite of --pretty.

ACTIONS ON BOOT CONFIGURATION(S)
list (ls) [--long | --long-long | --raw]

List information about boot configurations.

-l, --long Show a subset of all optional information for each node.

-L, --long-long Show all optional information for each node.

--raw Display the raw JSON content from the database.

create (mk) [--content [JSON | INI_FILE]] [NAME=VALUE] ...
Add a boot configuration with optional JSON or INI_FILE content or with optional NAME / VALUE
pairs.

--content [JSON | INI_FILE]
Load this JSON or INI_FILE content into the database as a boot config.

clone (cp) [--content [JSON | INI_FILE]] [NAME=VALUE] ...
Copy boot configuration with optional JSON or INI_FILE content or with optional NAME / VALUE
identifiers.

--content [JSON | INI_FILE]
Overwrite fields in the cloned boot config.

update (up) [--content [JSON | INI_FILE]] [NAME=VALUE] ...
Modify boot configuration NAME field(s) with new value(s).

--content [JSON | INI_FILE]
Overwrite this content into the database for a boot config.

replace (re) [--content [JSON | INI_FILE]] [NAME=VALUE] ...
Replace all boot configuration fields.

--content [JSON | INI_FILE]
Overwrite this content into the database for a boot config.

delete (rm) [-r, --recurse]

Delete boot configuration(s).

-r, --recurse Optionally also delete the referenced image or iso-based repo.

download [--dest DIR] FILENAME ...
Extract named file(s) (any of "initramfs", "kernel") from boot config and download to current working directory
(or to directory DIR).

export [--no-recurse] [PATH]

4.25. Boot Configurations 151

ICE ClusterWare Documentation, Release 12.4.0

Export the specified boot configuration NAME to the file NAME.export in the current working direc-
tory or in destination PATH.

--no-recurse Do not recurse through and include dependencies.

import [--no-recurse] [--boot-config NAME_BOOT] [--image NAME_IMG] NAME.export
Import the NAME.export file into a local boot configuration (default embedded in NAME.export, or optionally
renamed NAME_BOOT) and associated compute node image (or optionally renamed NAME_IMG).

mkiso [--image NAME] [--output PATH]
Create a bootable ISO from the boot configuration.

--image NAME Use a different image with this boot configuration.

--output PATH Where to save the resulting ISO.

EXAMPLES

scyld-bootctl create name=Fed29Boot \
kernel=@/boot/vmlinuz-4.20.6-200.fc29.x86_64 \
initramfs=@cw-ramfs-4.20.6-200.fc29.x86_64

Create a boot configuration with a premade kernel and initramfs.

scyld-bootctl -iFed29Boot download kernel

Download the kernel previously uploaded to the Fed29Boot configuration.

scyld-bootctl -iFed29Boot update \
initramfs=@new-ramfs-4.20.6-200.fc29.x86_64 \
description="Ramfs created Fed24

Replace the initramfs with a new one.

scyld-bootctl -i DefaultBoot ls -l

Display details about the DefaultBoot configuration.

scyld-bootctl -i DefaultBoot update cmdline="enforcing=0 console=ttyS0,115200"

Update the cmdline that is passed to a booting kernel to a new value. Note that update changes the entire cmdline, so
to append a new substring to an existing cmdline, first view the full boot config (as noted in the example above), then
form a new cmdline string with existing pieces you wish to retain.

scyld-bootctl -i SlurmBoot export
mv SlurmBoot.export ExportSlurmBoot

Export the boot config SlurmBoot and associated image as file SlurmBoot.export, and rename that file to ExportSlurm-
Boot. Note that the boot config name is embedded in ExportSlurmBoot as "SlurmBoot".

scyld-bootctl import ExportSlurmBoot

Import the ExportSlurmBoot contents to a different cluster as a new SlurmBoot boot config and associated compute
node image.

scyld-bootctl import --boot-config Slurm19Boot ExportSlurmBoot

Import the ExportSlurmBoot contents to a different cluster as a new Slurm19Boot boot config and associated compute
node image.

152 Chapter 4. Administration

ICE ClusterWare Documentation, Release 12.4.0

scyld-bootctl import --boot-config Slurm19Boot --image Slurm19Image ExportSlurmBoot

Import the ExportSlurmBoot contents to a different cluster as a new Slurm19Boot boot config and associate compute
node image with new name Slurm19Image.

scyld-bootctl import --boot-config Slurm19Boot --no-recurse ExportSlurmBoot

Import the ExportSlurmBoot contents to a different cluster as a new Slurm19Boot boot config without including the
embedded image.

RETURN VALUES
Upon successful completion, scyld-bootctl returns 0. On failure, an error message is printed to stderr and scyld-
bootctl returns 1.

4.25.5 Freezing a Boot Configuration
You can "freeze" a boot configuration to block future changes to it by setting the frozen field to true (example boot
configuration named xyzBoot):

scyld-bootctl -i xyzBoot update frozen=true

This blocks updates to any field in the boot configuration, stops any field data from being erased, and prevents the boot
configuration from being deleted.

To re-enable changes, set frozen back to false (the default):

scyld-bootctl -i xyzBoot update frozen=false

Anyone who can set frozen=true can also set it to false and thus this mechanism primarily protects against ac-
cidental changes to "known good" boot configurations. It does not provide significant protection against malicious
attacks.

4.25.6 Deleting Boot Configurations
Boot configurations contain only a kernel and initramfs and consume only a few tens of megabytes. Permanently delete
an unwanted boot configuration with the following command (example boot configuration named xyzBoot):

scyld-bootctl -i xyzBoot delete

4.25.7 Exporting and Importing Boot Configurations Between Clusters
A multiple head node cluster contains cooperating head nodes that share a replicated database and transparent access
to peer boot configurations, kernel images, and initramfs files. See Managing Multiple Head Nodes for details. There
is no need to manually copy boot configs between these head nodes.

However, it may be useful to copy boot configurations from a head node that controls one cluster to another head node
that controls a separate cluster, thereby allowing the same boot config to be employed by compute nodes in the target
cluster. On the source head node the administrator "exports" a boot config to create a single all-inclusive self-contained
file that can be copied to a target head node. On the target head node the administrator "imports" that file into the local
cluster database, where it merges with the local head node's existing configs, images, and files.

s Important

4.25. Boot Configurations 153

ICE ClusterWare Documentation, Release 12.4.0

Prior to exporting/importing a boot configuration, you should determine if the boot config and kernel image names
on the source cluster already exist on the target cluster. For example, for a boot configuration named xyzBoot,
execute scyld-bootctl -i xyzBoot ls -l on the source head node to view the boot config name xyzBoot and
note its image name, e.g., xyzImage. Then on the target head node execute scyld-bootctl ls -l | egrep
"xyzBoot|xyzImage" to determine if duplicates exist.

If any name conflict exists, then either (1) on the source head node create or clone a new uniquely named boot config
associated with a uniquely named image, then export that new boot config, or (2) on the target head node import the
boot config using optional arguments, as needed, to assign unique name or names.

To export the boot configuration xyzBoot:

scyld-bootctl -i xyzBoot export

which creates the file xyzBoot.export. If there is no name conflict(s) with the target cluster, then on the target head
node import with:

scyld-bootctl import xyzImage.export

If there is a name conflict with the image name, then perform the import with the additional argument to rename the
imported image:

scyld-bootctl import xyzImage.export --image uniqueImg

or import the boot config without importing its embedded image at all (and later associate a new image with this
imported boot config):

scyld-bootctl import xyzImage.export --no-recurse

If there is a name conflict with the boot config name itself, then add:

scyld-bootctl import xyzImage.export --boot-config uniqueBoot

Associate a new image name to the imported boot config if desired, then associate the boot config with the desired
compute node(s):

scyld-nodectl -i <NODES> set _boot_config=xyzBoot

4.25.8 Using Kickstart
The Boot Configurations section discusses the creation and modification of compute node images and how to add
locally installed nodes to the system. The ICE ClusterWare™ platform provides support for an additional method of
dynamically provisioning compute nodes: Kickstart.

4.25.8.1 Kickstart Files

A kickstart file configures how a kickstarted node is initialized at boot time. The files are stored on the head node
in the /opt/scyld/clusterware/kickstarts/ folder. In a multihead configuration this folder must currently be
manually synced between head nodes. These kickstart files typically contain a limited set of variables that will be
substituted at download time.

For example, the ClusterWare package includes the basic.ks kickstart file that begins with the following contents:

154 Chapter 4. Administration

ICE ClusterWare Documentation, Release 12.4.0

Node fields, attributes, status, and hardware are available in
dictionaries referenced by name or initial. Some examples:
#
<node[ip]>
<a[_boot_config]>
<hardware[mac]>

Perform a SOL friendly text-based install.
text

Pull some basics from the head node.
url --url <root_url()>
lang <head[lang]>
keyboard <head[keymap]>
timezone <head[timezone]>

The angle-bracket notation is used to substitute head-node or compute-node information into the kickstart file, essen-
tially turning it into a kickstart template. When a node begins the kickstart process, it will query the head node for the
file and all variables will automatically be substituted as the file is downloaded. This allows admins an opportunity to
insert node-specific data into the kickstart. In addition to the <head[name]> syntax, node attributes may be referenced
with <a[name]>, and similar template expansions are available for a node's hardware and status information, as well
as other head- and system-specific substitutions. By templatizing the kickstart file, admins can better generalize those
files for a simpler configuration process with fewer node-specific files or commands. For more information, including
a complete list of template variables, see Variable Substitution.

The simple basic.ks performs a boot time install of both the base distribution core packages (e.g., from Rocky8repo)
and the associated clusterware-node package which is appropriate for that particular base distribution.

Associate the boot configuration with a kickstart file:

scyld-bootctl -i Rocky8boot update kickstart=basic.ks

and associate a compute node to boot this boot configuration:

scyld-nodectl -i n0 set _boot_config=Rocky8boot

Finally, reboot node n0 to initiate the kickstart, which will take a few minutes to complete.

Once the freshly installed node has booted, there will be a /root/anaconda-ks.cfg file that can be used as a starting
point for creating a more generalized kickstart file. If the cluster administrator would like to reinstall the node the exact
same way, the simplest thing to do is copy that anaconda-ks.cfg file to the head node's kickstart directory and assign
it to be used in the boot configuration:

Copy the compute node's /root/anaconda-ks.cfg to the head node,
and then copy to the head node's kickstart files folder.
cp anaconda-ks.cfg /opt/scyld/clusterware/kickstarts
And update the boot configuration to use the file.
scyld-bootctl -i Rocky8boot update kickstart=anaconda-ks.cfg

After that file is in place, any compute node booted from that boot configuration without the next or live boot style will
boot using the kernel and initramfs from the ISO, and a URL to the kickstart file will be added to the kernel command
line. Keep in mind that once a node starts the kickstart process, it is a good idea to change its boot style to next so that
it does not reboot at the end of the install process and immediately reinstall. Configuring the kickstart process to end
with a shutdown command (see your operating system documentation) is the current best practice.

If a cluster administrator wants to use a different kernel and/or initramfs for kickstarting instead of the ones found on

4.25. Boot Configurations 155

ICE ClusterWare Documentation, Release 12.4.0

the ISO, those can be replaced just like in any other boot configuration through the update action. Updating them with
an empty string will reset them back to the detected paths:

scyld-bootctl -i Rocky8boot update kernel= initramfs=

4.25.8.2 Kickstart Failing

If a node has been configured to kickstart using a boot configuration provided by a repo created from an ISO file but
is failing, then check the console output for the node. If the node is entering the "Dracut Emergency Shell" from the
dracut timeout scripts, then you will need to retry and see what messages were on screen prior to the "Warning: dracut-
initqueue timeout" messages that flood the screen. One common error is "Warning: anaconda: failed to fetch stage2
from <URL>", where the URL points to a repo on the head node. If this message occurs, please check that you have
uploaded the correct ISO into the system.

For CentOS and RHEL, the "boot" ISO files such as CentOS-8.1.1911-x86_64-boot.iso do contain the files
necessary to initiate the kickstart process, but do not contain the full package repositories. The cluster administra-
tor must provide appropriate URLs in the kickstart file, or must upload a more complete ISO such as CentOS-8.
1.1911-x86_64-dvd1.iso using the scyld-clusterctl command. For example, to replace the ISO originally
uploaded into a newly created centos8_repo repo:

scyld-clusterctl repos -i centos8_repo update iso=@CentOS-8.1.1911-x86_64-dvd1.iso

4.25.9 Using RHCOS
The ICE ClusterWare™ platform provides support for installing and using RHCOS.

First create a repo from a RHCOS ISO file. For example:

scyld-clusterctl repos create name=rhcos iso=@rhcos-4.10.3-x86_64-live.x86_64.iso

Once the repo is created, the ISO will be automatically forwarded to all head nodes and will be locally mounted on
each. Below are the repository details immediately after the upload completes:

[cwadmin@virthead]$ scyld-clusterctl repos -i rhcos ls -l
Repos
rhcos
iso
chksum: ee4f06946822b55c81c8aa95e21df4f02b9699e8
filename: 7e9666b05e914b85b59be21f23ce9136
mtime: 2022-06-17 18:20:52 UTC (0:16:20 ago)
size: 999.0 MiB (1047527424 bytes)

isolabel: rhcos-410.84.202201251210-0
keys: []
name: rhcos
urls: []

Now create a boot config that uses this repo:

scyld-bootctl create name=rhcosBoot repo=rhcos

Examine the details of the boot config:

scyld-bootctl -i rhcosBoot ls -l
Boot Configurations
rhcosBoot

(continues on next page)

156 Chapter 4. Administration

ICE ClusterWare Documentation, Release 12.4.0

(continued from previous page)

cmdline: coreos.live.rootfs_url=<BASE_URL>/repo/rhcos/content/images/pxeboot/rootfs.
→˓img coreos.inst.install_dev=<attributes[_coreos_install_dev]> coreos.inst.ignition_url=
→˓<attributes[_coreos_ignition_url]>

image: none
initramfs: repo:images/pxeboot/initrd.img
kernel: repo:images/pxeboot/vmlinuz
last_modified: 2022-06-17 18:22:31 UTC (0:03:42 ago)
name: rhcosBoot
release: 4.18.0-305.34.2.el8_4.x86_64
repo: rhcos

Note the _coreos_install_dev and _coreos_ignition_url attributes in the cmdline. These attributes are set by the
scyld-nodectl tool for the specific node(s) that use the rhcosBoot boot config.

For example:

scyld-nodectl -in0 set _boot_config=rhcosBoot \
_coreos_ignition_url=http://10.20.30.40/path/path/ignition.ign \
_coreos_install_dev=/dev/sda

For further information and examples about ignition files, see https://cloud.redhat.com/blog/
provision-red-hat-coreos-rhcos-machines-with-custom-v3-ignition-files.

This variable replacement scheme is similar to the variable replacement in kickstart *.ks files.

4.26 Software Images

4.26.1 Images
An important concept is local image versus remote image.

The ICE ClusterWare™ backend retains the official copy of file system images, which are termed remote images. When
a compute node PXE boots, it first downloads the Linux kernel and initramfs provided as part of the boot configuration
assigned to the node. Next, the node downloads the remote image referenced in the boot configuration from a head
node or peer node.

When a tool such as scyld-modimg creates or manipulates image contents, the tool manipulates a cached local version
of the remote image. Per-administrator cache(s) are ~/.scyldcw/workspace/. The tool first downloads a remote
image into the cache if it doesn't already exist there. Typically a new or modified cached local image is uploaded to the
database when the creation or modification is complete.

See Deleting Unused Images for details about how to delete local or remote images.

4.26.1.1 Images Page

An initial image, DefaultImage, is created during initial ICE ClusterWare™ installation. You can create additional
images from an ISO or network-accessible package repository.

Use the Images page to create and manage images. The page is available via Provisioning + SW > SW Images in the
left navigation panel.

4.26. Software Images 157

https://cloud.redhat.com/blog/provision-red-hat-coreos-rhcos-machines-with-custom-v3-ignition-files
https://cloud.redhat.com/blog/provision-red-hat-coreos-rhcos-machines-with-custom-v3-ignition-files

ICE ClusterWare Documentation, Release 12.4.0

Create an Image

To create an image:

1. Click Add Image.

2. Add details about the image.

• Name: Required.

• Description: Optional.

• Parent: Optional. Use to track the origin of the image. No configuration or attributes are inherited when
using this field.

• Distros: Optional. Use this to associate the image with the distro used for creation.

• Frozen: Freezing an image prevents future changes, including updates to image details, removing data, or
deleting the image. For details, see Freezing an Image.

3. Click Add Image to save your changes.

The new image appears in the list at the top of the page.

Edit Image

To edit an image:

1. Click the ellipsis (...) on the far right of the row and select the Edit action. The Edit Image pane populates with
the image details.

2. Make updates to the image.

3. Click Edit Image to save your changes.

Delete Image

To delete an image, click the ellipsis (...) on the far right of the row and select the Delete action.

158 Chapter 4. Administration

ICE ClusterWare Documentation, Release 12.4.0

Related Links

• Images

• scyld-modimg

4.26.1.2 Creating Images

s Important

Various commands that manipulate images execute as user root, thereby requiring that the commands internally
use sudo and requiring that user root must have access to the workspace that contains the administrator's images.
Typically the per-user workspace is ~/.scyldcw/workspace/. If that directory is not accessible to the command
executing as root, then another accessible directory can be employed. You can identify that alternative path by
adding a modimg.workspace setting to ~/.scyldcw/settings.ini.

The scyld-install script creates an initial image with the default name DefaultImage based on publicly avail-
able repositories that match the head node operating system. If these repositories are not accessible, the
scyld-add-boot-config tool can be run later with locally accessible repositories as described in Creating Local
Repositories without Internet. Once the DefaultImage is created, use scyld-modimg to modify it directly. A safer
approach is to use scyld-imgctl to clone the DefaultImage to new name, and then use scyld-modimg to modify
that cloned image, leaving the DefaultImage untouched. See Modifying Images for details. You can also recreate the
DefaultImage. See Recreating the Default Image for details.

You can also create a new image from an ISO or network accessible package repository. When doing that, consider
the source of the components (packages) for the new image. A distro ties together a list of repos (package repositories)
and an optional release. The package_manager is determined during image creation, but can be overridden in the
distro. The initial default distro matches the original head node's version, uses package_manager yum, and downloads
packages from a one item repos list containing "Rocky_base":

[admin@virthead]$ scyld-clusterctl distros ls -L
Distros
Rocky
name: Rocky
packaging: rpm
release: 8
repos
Rocky_appstream
Rocky_base

[admin@virthead]$ scyld-clusterctl repos ls -L
Repos
Rocky_appstream
keys: []
name: Rocky_appstream
urls
http://dl.rockylinux.org/pub/rocky/$releasever/AppStream/$basearch/os/

Rocky_base
keys: []
name: Rocky_base
urls
http://dl.rockylinux.org/pub/rocky/$releasever/BaseOS/$basearch/os/

4.26. Software Images 159

ICE ClusterWare Documentation, Release 12.4.0

Use the following command to create a new image named "NewImg" using the default distro that downloads packages
from the latest Rocky yum repo:

scyld-modimg --create --set-name NewImg

To create a Rocky image that contains something other than the latest Rocky release, see Creating Arbitrary Rocky
Images. To create a RHEL image, see Creating Arbitrary RHEL Images.

4.26.1.3 Recreating the Default Image

If you want to recreate the DefaultImage that was built by the scyld-install tool, first delete the components of the
existing image and boot config:

scyld-attribctl -i DefaultAttribs rm
scyld-bootctl -i DefaultBoot rm
scyld-imgctl -i DefaultImage rm

Then create a new default. If there are no attribute groups defined on this cluster (see Node Attributes), then run:

scyld-add-boot-config --make-defaults

Otherwise clear the attributes before running the command.

4.26.1.4 Repos and Distros

One of the steps in the scyld-install script is to run the scyld-clusterctl tool to define a distro prior to creating
the first image. The scyld-modimg tool only creates images based on defined distros. A distro associates one or more
repos together with their package manager and an optional release string. If no release string is provided, then any
supplied URL should not include the string "$releasever", as that variable is not be defined during image creation. On
a Rocky or RHEL system, the default repo and distro are created by:

scyld-clusterctl repos create name=Rocky_base \
urls=http://dl.rockylinux.org/pub/rocky/$releasever/BaseOS/$basearch/os/

scyld-clusterctl repos create name=Rocky_appstream \
urls=http://dl.rockylinux.org/pub/rocky/$releasever/AppStream/$basearch/os/

scyld-clusterctl distros create name=Rocky packaging=rpm release=8 \
repos=Rocky_appstream,Rocky_base

Together with the local /etc/yum.repos.d/clusterware.repo file, this information is used at image creation time
to generate a /etc/yum.repos.d/clusterware-node.repo file for the image containing sections referring to both
the head node's ICE ClusterWare™ repository and to the distro's repos.

You can create additional repos and distros to make node images based on different upstream sources. To do this,
provide multiple comma-separated URLs to the scyld-clusterctl repos create command or multiple repos to
the scyld-clusterctl distros create command. Distros can also be imported from an existing yum repo files.
For example:

scyld-clusterctl distros import --name Rocky \
/etc/yum.repos.d/Rocky-BaseOS.repo /etc/yum.repos.d/Rocky-AppStream.repo

The import action creates repos based on the contents of the provided yum repo file(s) and then associates all of them
with a newly created Rocky9 distro. Any string passed to --release is saved into the distro release field and is used
by yum to replace any occurrences of "$releasever" in the repo file.

See the the scyld-clusterctl repos and distros actions and the scyld-modimg command that is used to actually create
and modify images.

160 Chapter 4. Administration

ICE ClusterWare Documentation, Release 12.4.0

Using ISO Releases

Many distributions are distributed in ISO form. Use the scyld-clusterctl tool to create an image from an ISO. For
example, for an ISO named Rocky-9.5-x86_64-dvd.iso, first create a repo:

scyld-clusterctl repos create name=rocky_9.5_iso \
iso=@/path/to/Rocky-9.5-x86_64-dvd.iso

Next, create a distro that references the new repo:

scyld-clusterctl distros create name=rocky_9.5_distro repos=rocky_9.5_iso

Finally, create an image using that repo and distro:

scyld-modimg --create rocky_9.5_distro --set-name rocky_9.5_image

When this image is booted, the ISO-based repo may not be accessible, and the /etc/yum.repos.d/
clusterware-node.repo file needs to be modified to use a more permanent repo location.

Using Archived Releases

Many distributions archive individual releases after they are superseded by a newer release, but for this discussion we
will examine CentOS. The CentOS project provides packages and updates on their various mirror sites for the most
recent release, but deprecates all previous point releases. This means that at the URL where a mirror would nominally
keep the previous release, a readme file is provided explaining that the release has been deprecated and pointing users
to the CentOS vault for packages. The packages located in the vault are unchanged from when they were "current". The
CentOS project also deprecates the release that is two major releases back. For example, as of the release of version 7,
version 5 was deprecated. In this way there are always two currently supported versions of CentOS, the latest and the
most recent of the previous major release.

What this means for ClusterWare administrators is twofold:

1. To create an image of an archived version of CentOS, create the correct repo and distro objects in the ClusterWare
database.

2. After creating an image from the vault, manually modify the yum repo files present in the image.

To create an image based on an archived version of CentOS (7.3 in this example), the steps are:

scyld-clusterctl repos create name=CentOS-vault \
urls=http://vault.centos.org/\$releasever/os/\$basearch/

scyld-clusterctl distros create name=CentOS_7.3 repos=CentOS-vault release=7.3.1611
scyld-modimg --create CentOS_7.3 --set-name CentOS_7.3_img

The first command creates a repo called CentOS-value pointing at the generic vault URL. The second command creates
a distro that references the CentOS-vault repo and defining the release string. Once the distro exists, it can be referenced
by name in the third command to actually create a new image.

Unfortunately, because the CentOS vault packages are identical to when they were the current release, the yum repo
files located in the /etc/yum.repos.d/ directory contain references to mirror.centos.org instead of vault.
centos.org. Manually modify these files after image creation and before running yum commands directly or through
the scyld-modimg --install, --uninstall, --update, or --query. The above scyld-modimg --create com-
mand displays an error referring back to this documentation:

[admin@virthead]$ scyld-modimg --create CentOS_7.3 --set-name CentOS_7.3_img

Executing step: Create
(continues on next page)

4.26. Software Images 161

ICE ClusterWare Documentation, Release 12.4.0

(continued from previous page)

Preparing the chroot...
...done.

Initializing the chroot...
elapsed: 0:01:11.4
...initialized.

Installing core packages...
elapsed: 0:00:01.0

ERROR: One or more repositories in the newly created image are invalid. This
can happen when installing older versions of Linux distributions such as CentOS.
Please consult the Administrator's Guide for more information.
WARNING: The command will be retried with unknown repositories disabled.
elapsed: 0:02:39.9
fixing SELinux file labels...
...done.

step completed in 0:04:13.6

To manually modify the yum repo files, use the scyld-modimg --chroot command on an already created image as
follows:

[admin@virthead]$ scyld-modimg -i CentOS_7.3_img --chroot
Checksumming image 6a8947156e08402ba2ad6e23a7642f4f
elapsed: 0:00:01.0

Unpacking image 6a8947156e08402ba2ad6e23a7642f4f
100.0% complete, elapsed: 0:00:29.6 (62.2% compression)

Checksumming...
elapsed: 0:00:01.0

Executing step: Chroot
Dropping into a /bin/bash shell. Exit when done.
[root@virthead /]# exit
exit

fixing SELinux file labels...
(K)eep changes or (d)iscard? [kd]

When you exit the shell, the tool confirms that you want to keep the changes made and offers to upload the modified
image to head node storage.

Installing Software With Subscriptions

For distributions requiring subscriptions for access to updated packages, note that subscription information in an image
is used by all nodes unless removed before upload:

hostname nodeTemplate
subscription-manager register --username=$RHUSER --password=$RHPASS
subscription-manager attach --pool=$POOL_ID
yum upgrade -y
yum install $REQUIRED_PACKAGE
subscription-manager remove --all
subscription-manager unregister
subscription-manager clean

162 Chapter 4. Administration

ICE ClusterWare Documentation, Release 12.4.0

4.26.1.5 Modifying Images

Once you have an existing image, you can install additional RPMs into that image. A recommended best practice is to
rarely and only very carefully modify DefaultImage and DefaultBoot. Instead, use them as stable baselines from which
you clone new images and boot configurations.

The scyld-modimg tool supports a rich collection of options. See scyld-modimg for details.

For example:

scyld-imgctl -i DefaultImage clone name=mpiImage
scyld-add-boot-config --image mpiImage --boot-config mpiBoot
scyld-modimg -i mpiImage --install openmpi3.1

Suppose you want to create a new boot config mpiAltBoot that references the same mpiImage, though is otherwise
different than mpiBoot. For instance, if you want mpiAltBoot to have a different cmdline:

scyld-bootctl -i mpiBoot clone name=mpiAltBoot

Note that an updated cmdline replaces the entire existing cmdline,
so examine the current cmdline:
scyld-bootctl -i mpiAltBoot ls -l | grep cmdline
and perhaps the current cmdline is "enforcing=0", which you add to a new cmdline:
scyld-bootctl -i mpiAltBoot update cmdline="enforcing=0 console=ttyS1,115200"

You can manually customize an image, including installing or removing RPMs and modifying configuration files, by
operating on the image inside a chroot:

scyld-modimg -i mpiImage --chroot

You can also combine commands, ending inside a chroot:

scyld-modimg --create --set-name mpiImage --install openmpi3.1 --chroot

If scyld-modimg --chroot detects a problem accessing or manipulating the local image, delete the local image
(see Deleting Unused Images), and then the retry of the operation will download a fresh copy of the remote image into
the cache. Alternatively, execute scyld-modimg and add the --freshen argument, which ignores the current cached
local image and downloads a fresh copy.

Inside the chroot, execute as user root and manually add, update, or remove rpms with yum (or other appropriate package
manager), modify configuration files, etc. When you exit the chroot, you are asked if you want to discard or keep the
changes. If you keep the changes, then you are asked whether or not you want to replace the local image, to upload the
local image, and to replace the remote image.

ò Note

Keep in mind that several directories in the image do not get repacked and saved into the image file after an exit.
Among them are /tmp/, /var/tmp/, and /var/cache/yum.

If your intention is to answer yes to all the questions following your exit, then you can skip those questions by adding
more arguments to the original command line:

scyld-modimg --create --set-name mpiImage --install openmpi3.1 --chroot \
--no-discard --overwrite --upload

Examine the RPM contents of an image without going into a chroot by doing a simple query:

4.26. Software Images 163

ICE ClusterWare Documentation, Release 12.4.0

Display the version of 'clusterware-node' in the image
scyld-modimg -i mpiImage --query clusterware-node

Display the version of all RPMs in the image
scyld-modimg -i mpiImage --query

Finally, you must set the _boot_config attribute for specific nodes, or for all nodes, as desired to use this new boot
config. For example, to have nodes n0-n15 use the mpiBoot boot config:

scyld-nodectl -i n[0-15] set _boot_config=mpiBoot

The scyld-modimg command prompts you about whether to overwrite an existing image or create a new one. It also
prompts about whether to upload the resulting file to the head node, optionally overwriting the image stored on the ICE
ClusterWare™ head node. This tool operates on a local cache of the image and cannot be used to delete an image from
the head nodes or to directly modify the name or description of an image on the head node. To modify these sorts of
fields, use the scyld-imgctl tool.

Images are stored in the head node's /opt/scyld/clusterware/storage/ directory in cwsquash format, which
consists of a squashfs image offset inside a pseudo-disk image. This format is suitable for exporting via iSCSI.

Small homogeneous clusters may use a single node image across all compute nodes, although larger clusters that
include compute nodes with differing hardware will require additional customization that may not be applicable to all
nodes. Although you might find that node attributes (discussed in more detail in Interacting with Compute Nodes)
and customized boot-time scripting provide adequate image customization, it may be useful (or necessary) to create
additional boot configurations and root file systems that meet specific hardware and/or software needs.

Customization can involve more than adding software drivers to support node-specific hardware and adding applications
and their associated software stacks. It can also involve customizing configuration files in an image to deal with a non-
standard networking environment. For example, if the compute node needs to use a networking route that is not the
gateway defined in the head node's /opt/scyld/clusterware-iscdhcp/dhcpd.conf.template, then you can edit
that file to modify the default option routers <GATEWAY>; line, or edit the compute node image's appropriate /
etc/sysconfig/network-scripts/ifcfg-* script to insert the desired GATEWAY IP address. For more details
see the documentation for your base distribution.

4.26.1.6 Caching in scyld-modimg

To provide the best performance, the scyld-modimg command keeps a local cache of images within the ~/.scyldcw/
workspace directory. This directory contains a manifest.json file that lists the cached images. An image is added
to the list whenever a cluster administrator downloads it. When the scyld-modimg command executes, it checks the
workspace directory for images that are older than an hour and identical to the same images, matched by UID and
name, stored by the head node. Images matching these criteria are evicted from the cache.

When you run the scyld-modimg command, the tool checks the local cache for a copy of the image based on the
identifier provided, usually the image name. If a match is found, that image is unpacked for modification (to avoid a
fresh download from the head node). You can modify the image in stages without losing changes in between, even if
you do not upload the image to the cluster at each step.

This behavior can cause unexpected conflicts in very specific circumstances. If you modify an image and then delete
that image from the cluster using the scyld-imgctl or scyld-bootctl commands, the local cache still contains a
copy. This means that the next time the scyld-modimg command executes it will see the locally cached image and,
regardless of the age, not delete it because an identical image is no longer available from the head node.

If you then create a new image by the same name, perhaps through cloning an existing image using the scyld-imgctl
command, and attempt to modify that image using scyld-modimg, you will actually be modifying the local cache due
to the name match. When you attempt to upload this modified image, the upload will fail because of a UID mismatch.
For example:

164 Chapter 4. Administration

ICE ClusterWare Documentation, Release 12.4.0

ERROR: No image found for ID=d67501a26509486ebaad00827d7fac23

The simplest way to resolve this problem is to delete the locally cached image:

scyld-modimg -i <IMAGENAME> --delete

Then re-run the scyld-modimg command to modify the image. Since the local cache no longer contains an image with
a matching name, the tool will download a fresh copy from the head node and record the correct UID in manifest.
json. This is almost always the desired solution since you have likely modified the wrong image without realizing
it.

If you do want to keep the changes, the simplest approach is to identify the new image UID:

scyld-imgctl --show-uids ls <IMAGENAME>

Then replace the image UID in the ~/.scyldcw/workspace/manifest.json file, rename the image file itself to the
new UID, and reattempt the upload:

scyld-modimg -i <IMAGENAME> --upload

Once this command completes, the old image content overwrites the new image content and the changes made previ-
ously are preserved.

4.26.1.7 Updating the Kernel in an Image

Compute nodes that boot over the network download their kernel and initramfs at boot time from their parent head node
(the first head node to respond to their DHCP request). The required kernel, initramfs, command line, and a reference
to an image are combined within a ICE ClusterWare™ boot configuration that can be assigned to the nodes.

To update kernels or other packages within an image, named Prod202404 in this example, run either:

scyld-modimg -i Prod202404 --chroot --overwrite --upload

Or

scyld-modimg -i Prod202404 --update --overwrite --upload

The first is interactive and requires running the dnf or yum update commands inside the chroot, whereas the second
attempts the updates, but may suppress some of the errors. If the kernel inside the image is updated, then the boot
configuration also needs to be updated. Assuming the newly installed kernel’s version is 5.14.0-362.24.1.el9_3.
x86_64 and the boot configuration is called ProdBoot202404, use the scyld-mkramfs command to update the boot
configuration:

scyld-mkramfs --kver 5.14.0-362.24.1.el9_3.x86_64 --update ProdBoot202404

ò Note

This new ClusterWare initramfs file is not the same as a similarly named "initramfs" file in the head node /boot/
directory, which is associated with a kernel in the /boot/ directory. This ClusterWare initramfs file is associated
with a specific image and boot config and it contains custom ClusterWare scripts that execute at boot time.

Without the --kver <KVER> options, the tool attempts to select the most recent kernel based on version directories
found in /lib/modules within the image, so explicitly selecting the version is not required. This command examines
the boot configuration, extracts the kernel from the image, uses dracut within the image to build a new initramfs, extracts
that as well, and then uploads both into the boot configuration.

4.26. Software Images 165

ICE ClusterWare Documentation, Release 12.4.0

Alternatively, you may want to add a new boot configuration. For example, you may want to boot different kernels within
the image, or you chose to upgrade a cloned copy of the original image. In this case, the scyld-add-boot-config
ommand can be used:

scyld-add-boot-config --image Prod202404Cloned –boot-config ProdBoot202404New

This command uses scyld-mkramfs internally to extract the kernel and generate the initramfs, then uses those
files to construct the new boot configuration with a default command line and a reference to the named image,
Prod202404Cloned in this example.

Check the release field of the boot configuration after it is created to see the kernel version. Any nodes assigned to use
this boot configuration will boot using that kernel. If a node is then booted and does not use the correct kernel, confirm
that the node’s _boot_config attribute references the correct boot configuration.

4.26.1.8 Updating Drivers Inside Images

The ICE ClusterWare™ platform uses images to provision compute nodes. Because of this, any drivers, applications,
or libraries required to run the compute node hardware or jobs need to be available to the running compute node, not
the head node(s). To assure availability, software needs to be installed into the image or onto some form of cluster
shared storage. Drivers are more commonly installed into the image while applications and libraries are installed to
shared storage and accessed through the module command.

When installing software into an image there are two approaches available. The most common is installing into the
image via the scyld-modimg command, commonly via the --chroot option. In rare cases, some software can only
be installed on a running node. In these cases, the image be captured using the scyld-modimg --capture command.

For example, to install a package called prod-install.sh within an image named Prod202404 using the chroot
method, run:

scyld-modimg -iProd202404 --copyin prod-install.sh /root --chroot --upload --overwrite

The tool unpacks the image into a local workspace directory within your home and chroot into it after bind mounting
necessary system paths. Once inside the chroot, the prod-install.sh file is copied into /root and you can complete
the necessary steps to install the software.

Some types of software try to build kernel modules for the currently running kernel. Within a scyld-modimg
--chroot, that may be incorrect because the current kernel is actually the host kernel and may not match the ker-
nel running on the booted compute node. Most installers provide some command line option to allow you to specify
the target kernel, but for installers that do not, the kernel version can be specified immediately after the --chroot
argument:

scyld-modimg -iProd202404 --copyin prod-install.sh /root --chroot <KVER> --upload --
→˓overwrite

Specifying the kernel version causes the ClusterWare software to replace the uname command inside the chroot with
a wrapper that outputs the specified kernel version in place of the one detected by the actual uname command. This is
usually adequate to trick even stubborn installers into using the correct kernel. In the rare case of an installer that still
fails, ssh into a running node, install the software there, and then capture the file system to a new image via:

scyld-modimg --capture <NODE> --set-name <IMAGE> --chroot --upload

This command uses ssh to connect to the running node and run scripts on the node. These will copy the contents of
the local file systems, unpack them into a local directory, and then chroot into that directory. Within that chroot, you
can make further changes before the captured image is uploaded. Note that capturing a running node does run the risk
of capturing node-specific details, so installing software within the chroot is preferable.

166 Chapter 4. Administration

ICE ClusterWare Documentation, Release 12.4.0

4.26.1.9 Capturing and Importing Images

You can modify the files on a booted compute node and use the scyld-modimg --capture command to capture those
changes into the image. You can capture the node into an existing image or into a new image. First, confirm that the
node being captured is idle to reduce the chance of capturing an image in some intermediate state, then run the capture
command. For example, to capture node n0, run the following command:

scyld-modimg --capture n0 --set-name NewImage

This process may take several minutes. During that time the scyld-pack-node tool is executed on the compute
node via the scyld-nodectl exec mechanism. The result is streamed back to the scyld-modimg command that
then uploads it to the head node, potentially replacing an existing NewImage contents. The scyld-pack-node tool
captures all files on the node's / mount, but does not walk other mounted file systems to ensure that any shared storage
is not accidentally captured.

You also need to create a boot config for this captured image. For example:

scyld-add-boot-config --image NewImg --boot-config NewBoot

Manual work is likely required to generalize the captured image as the process may capture details specific to the
compute node. Due to this hazard, future ICE ClusterWare™ releases may expand what files are excluded during
image capture.

RHEL 7 clones use a version of RPM too old to properly interpret RHEL 9 packages, so if you are trying to create an
image, you may want to kickstart a diskful node and then use scyld-modimg --capture to create the image. You
must comment out or delete the node-specific lines in /etc/fstab created during the kickstarted installation.

4.26.1.10 Automating Common Image Tasks

The scyld-modimg --run command allows cluster administrators to collect command line arguments into a file and
execute those commands as a very simple script. Any step listed in the “image mutations” section of scyld-modimg can
be included in a run script using the full step name, minus the leading dashes, with any necessary arguments included
on the same line.

Although the command and script does not allow for flow control statements including conditionals and loops, this
functionality can be useful in automating repetitive steps in image creation. For example, the file below could be used
to copy in a more complicated script, execute it, and copy the results out of the image into the local directory.

copyin test-script.sh /tmp
execute /tmp/test-script.sh
copyout /tmp/results.log .

Use the following command to run the script:

scyld-modimg -i SlurmImage --run @commands.modimg --discard

The command is a shorter equivalent of the following command:

scyld-modimg -i SlurmImage --copyin test-script.sh /tmp --exec /tmp/test-script.sh --
→˓copyout /tmp/results.log . --discard

4.26.1.11 Deploying Images Using Ignition

To partition nodes during their boot process, the ICE ClusterWare™ platform leverages tools called Ignition and Bu-
tane. Both originate from the Red Hat CoreOS project, but are generally applicable for “first boot” actions such as
provisioning local storage. The Ignition tool accepts a machine parsable JSON formatted configuration file while the

4.26. Software Images 167

ICE ClusterWare Documentation, Release 12.4.0

Butane tool translates a human readable YAML format and produces the JSON file that ignition needs. Details of these
projects can be found at:

• Butane: https://coreos.github.io/butane/

• Ignition: https://coreos.github.io/ignition/

The functionality provided by Ignition enables the ClusterWare platform to partition and format local disks and deploy
a root file system image to the newly prepared drives. This bypasses the previously used kickstart process to deploy
locally-installed systems. The behavior of Ignition is controlled through a configuration file and node attributes. An-
other attribute triggers the installation of the GRUB2 bootloader, resulting in a fully provisioned and ready-to-boot
system. By default these systems still use the ClusterWare platform for DHCP and report status back to the head nodes,
but post-install changes can reconfigure the networking or disable the ClusterWare and Telegraf agents.

To utilize Ignition during provisioning, create an image that contains the desired operating system and software tools.
Note that older ClusterWare images may not contain all the tools, such as sgdisk or mkfs.xfs, necessary for Ignition
to properly partition or format the drives. Ignition is also relatively new and may rely on versions of tools that are not
available on older operating systems.

Once the image exists, create a boot configuration using the image:

scyld-add-boot-config --image <IMAGENAME> --boot-config <BOOTNAME>

Several node attributes must also be set on the target node:

Attribute Example Notes
_boot_config DeployBoot Name of the boot configuration to deploy
_boot_style disked Must be "disked"
_disk_root LABEL=root Reference to the new root partition / file system
_ignition config.butane Name of the Butane configuration file ending in .butane
_bootloader grub Must be "grub"

Once these attributes are set, reboot the node. The node will boot using the kernel and initramfs from the specified
boot configuration, and within the initramfs the system will execute the various Ignition stages during the normal image
download and unpacking process as follows:

• After networking is established and the node has downloaded its initial attributes.ini file, it will detect the
_ignition attribute and download the ignition binary from the head node.

• After downloading the root file system, the node will run the “fetch”, “kargs”, and “disks” stages to download
the configuration, check the kernel arguments, and partition local disks.

• Immediately before unpacking the file system, the node will run the “mount” stage and then proceed to unpack
the image into the mounted partitions.

• After unpacking the image, the node will run the “files” stage to manipulate the unpacked file system.

Once Ignition completes, the _bootloader attribute will trigger installation of the GRUB2 bootloader as a separate
step. A successful installation of grub will also update _boot_style to ensure nodes do not continually loop through
deployment. Finally, a reboot and relabel of the file system is triggered.

The Butane configuration needs to be copied to the /opt/scyld/clusterware/kickstarts directory on all head
nodes. As long as the file name ends with “.butane” the file will be translated by the Butane command at download
time. A file with any other extension must be a valid Ignition configuration file, as it will be passed directly to the
Ignition command without translation.

Examples of Butane configuration files can be found in the Butane project documentation:

168 Chapter 4. Administration

https://coreos.github.io/butane/
https://coreos.github.io/ignition/

ICE ClusterWare Documentation, Release 12.4.0

https://coreos.github.io/butane/examples/

The clusterware-tools package also includes a very simple Ignition example file at /opt/scyld/
clusterware-tools/examples/partitions.butane. That example file will partition the local drive (/dev/vda
on a VM) into two partitions, / and /boot where /boot is 1024 MB in size and / encompasses the rest of the drive.

Ignition provides functionality beyond simple disk partitioning and file system creation, including software RAID or
LUKS configuration, and the creation of systemd unit files. However, these features are considered experimental within
the ClusterWare system. Additional functionality will be confirmed in future releases.

An ignition.log file is produced during the deployment process and can be found in /opt/scyld/
clusterware-node/atboot on the booted node. In the case of errors the node will likely not be able to boot. In
that case, a cluster administrator can log into the initramfs shell during the 20 second “press any key” countdown and
examine the log file located at /atboot/ignition.log.

One substantial difference between using Ignition directly and using it via the ClusterWare platform is that Ignition
is intended to either produce exactly the desired result or nothing at all. However, when triggered by the _ignition
attribute, the tool will log failures and proceed. Future releases may change this behavior to more closely match the
standard Ignition approach.

4.26.1.12 Freezing an Image

You can "freeze" an image to block future changes to it by setting the frozen field to true (example image named
xyzImage):

scyld-imgctl -i xyzImage update frozen=true

This blocks updates to any field in the image, stops any field data from being erased, and prevents the image from being
deleted.

To re-enable changes, set frozen back to false (the default):

scyld-imgctl -i xyzImage update frozen=false

Anyone who can set frozen=true can also set it to false and thus this mechanism primarily protects against acci-
dental changes to "known good" images. It does not provide significant protection against malicious attacks.

4.26.1.13 Deleting Unused Images

Compute node images consume significant storage space. Remote images are replicated among cooperating head nodes
and are the files downloaded by PXEbooting compute nodes. A local image is a cached copy of a remote image that
was downloaded when an administrator viewed or modified the image. Deleting a local image does not affect its remote
version and merely causes it to be re-downloaded from the head node if and when an administrator subsequently views
or modifies it.

To view the list of local and remote images, run:

scyld-modimg ls

To delete a local cached image xyzImage, run:

scyld-modimg -i xyzImage --delete

To delete all cached images, run:

scyld-modimg --all --delete

4.26. Software Images 169

ICE ClusterWare Documentation, Release 12.4.0

Neither of these commands deletes or otherwise affects the remote images.

To permanently delete an unwanted remote image, run:

scyld-imgctl -i xyzImage delete

4.26.2 scyld-imgctl
NAME
scyld-imgctl -- Query and modify images for compute nodes.

USAGE
scyld-imgctl

[-h] [-v] [-q] [[-c | --config] CONFIG] [--base-url URL] [[-u | --user] USER[:PASSWD]]
[--human | --json | --csv | --table] [--pretty | --no-pretty] [--show-uids] [-a | -i
IMAGES] {list,ls, create,mk, clone,cp, update,up, replace,re, delete,rm, download,
stat, capture}

OPTIONAL ARGUMENTS
-h, --help Print usage message and exit. Ignore trailing args, parse and ignore preceding

args.

-v, --verbose Increase verbosity.

-q, --quiet Decrease verbosity.

-c, --config CONFIG Specify a client configuration file CONFIG.

--show-uids Do not try to make the output more human readable.

-a, --all Interact with all node images (default for list).

-i, --ids IMAGES A comma separated list of node images to query or modify.

ARGUMENTS TO OVERRIDE BASIC CONFIGURATION DETAILS
--base-url URL Specify the base URL of the ClusterWare REST API.

-u, --user USER[:PASSWD]
Masquerade as user USER with optional colon-separated password PASSWD.

FORMATTING ARGUMENTS
--human Format the output for readability (default).

--json Format the output as JSON.

--csv Format the output as CSV.

--table Format the output as a table.

--pretty Indent JSON or XML output, and substitute human readable output for other for-
mats.

--no-pretty Opposite of --pretty.

--fields FIELDS Select individual fields in the result or error.

ACTIONS ON IMAGE(s)
list (ls)

List information about node images.

170 Chapter 4. Administration

ICE ClusterWare Documentation, Release 12.4.0

create (mk)
Add node image.

clone (cp)
Copy node image to new identifiers.

update (up)
Modify node image fields.

replace (re)
Replace all node image fields.

delete (rm)
Delete node image(s) from the remote cache.

download FILES

Download named files FILES (any of "content").

--dest DIR Optional destination for the downloaded files. (Default is current working
directory.)

stat
Print the recorded file stats for an image.

capture [--save FILE] [--node NODE] [--exclude PATHS] [--content JSON/INI_FILE] ...
Replace or create an image captured from a running system, adding optional name=value pairs.

--save FILE
Save the image locally instead of uploading.

-n, --node NODE Select the node to capture.

--exclude PATHS Exclude additional paths during image capture, specifying either pathnames
or a file @FILE that contains a list of pathnames.

--content [JSON | INI_FILE]
Overwrite fields in the specified image(s).

EXAMPLES
scyld-imgctl -i DefaultImage download content

Download the previously uploaded image named DefaultImage.

scyld-imgctl -i DefaultImage stat

Print the last modified time and size of the previously uploaded image.

scyld-imgctl -i DefaultImage clone name=NewImage

Clone the DefaultImage to a new NewImage.

RETURN VALUES
Upon successful completion, scyld-imgctl returns 0. On failure, an error message is printed to stderr and scyld-
imgctl returns 1.

4.26.3 scyld-modimg
NAME
scyld-modimg -- Tool for manipulating image contents.

USAGE

4.26. Software Images 171

ICE ClusterWare Documentation, Release 12.4.0

scyld-modimg
[-h] [-v] [-q] [[-c | --config] CONFIG] [--base-url URL] [[-u | --user] USER[:PASSWD]]
[--human | --json | --csv | --table] [--pretty | --no-pretty] [--show-uids] [--fields
FIELDS] [[-a | --all] | [[-i | --image] IMAGE]] [--lock-msg MSG] [--freshen |
--download-only [PATHNAME]] [--overwrite | --no-overwrite] [--upload | --no-upload]
[--discard | --no-discard] [--discard-on-error] [--shell SHELL] [--pkgmgr CONF] [--run
SCRIPT] [--clean-local] [--register-all] [--set-name NAME] [--set-description DESC]
[--chroot [KVER]] [--create [DISTRO]] [--delete] [--import FILE] [--capture NODE]
[--install PKGS] [--update [PKGS]] [--uninstall PKGS] [--query [PKGS]] [--unpack TARGZ]
[--copyin SRC DEST] [--copyout SRC DEST] [--execute COMMAND] [--mount PATH] [--unmount
PATH] [--write-repos [DISTRO]] {list,ls}

ACTIONS
list (ls)

List information about node images.

OPTIONAL ARGUMENTS
-h, --help Print usage message and exit. Ignore trailing args, parse and ignore preceding

args.

-v, --verbose Increase verbosity.

-q, --quiet Decrease verbosity.

-c, --config CONFIG Specify a client configuration file CONFIG.

-a, --all Select all local images (default).

-i, --image IMAGE Or select an image by its name IMAGE.

--download-only [PATH]
Download a new local copy and then exit. If PATH is provided, then it is overwritten; Otherwise any cached
changes are lost.

--lock-msg MSG Provide a message for locking the image.

--freshen Discard any cached changes.

--overwrite Keep the same UID after modifications and overwrite any existing image on up-
load.

--no-overwrite Opposite of --overwrite.

--upload Upload the final version. NOTE: This must follow all image manipulations op-
tions.

--no-upload Opposite of --upload.

--discard Discard image changes.

--no-discard Opposite of --discard.

--discard-on-error Discard if a step fails.

--pkgmgr CONF Specify a package config file (using the '@' prefix), or pass the config con-
tents as a string CONF, to override the default config example seen in
/opt/scyld/clusterware-tools/examples/pkgmgr.ini. A cluster administrator wish-
ing to customize pkgmgr.ini should copy that example to another location, then
add, delete, and/or modify that copy as desired.

--shell SHELL Select the shell to use in the image for the mutation operations (default /bin/
bash).

172 Chapter 4. Administration

ICE ClusterWare Documentation, Release 12.4.0

--show-uids Do not try to make the output more human readable.

ARGUMENTS TO OVERRIDE BASIC CONFIGURATION DETAILS
--base-url URL Specify the base URL of the ClusterWare REST API.

-u, --user USER[:PASSWD]
Masquerade as user USER with optional colon-separated password PASSWD.

FORMATTING ARGUMENTS
--human Format the output for readability (default).

--json Format the output as JSON.

--csv Format the output as CSV.

--table Format the output as a table.

--pretty Indent JSON or XML output, and substitute human readable output for other for-
mats.

--no-pretty Opposite of --pretty.

--fields FIELDS SElect individual fields in the result or error.

CACHE MANIPULATIONS
Make changes to the local image cache.

--clean-local Delete local images not found in the manifest and any temporary files or directo-
ries.

--register-all Record information about all locally stored images.

--set-name NAME Set the name of the image.

--set-description DESC Set the description for the image.

IMAGE MUTATIONS
The following steps are be performed on a selected image. Any failure terminates execution.

--run SCRIPT Run a list of scyld-modimg commands.

--chroot [KVER]
Chroot into the unpacked image to allow for manual modifications. Optionally specify KVER, which is the
version of a kernel inside the image, which informs a uname -r inside the chroot to identify the specific kernel
version if/when configuring software needing to link against that kernel. (Otherwise a uname -r inside a chroot
names the kernel of the host system executing the scyld-modimg, not the kernel installed inside the chrooted
image.) See --execute COMMAND and EXAMPLES.

--create [DISTRO]
Create a new image from scratch, optionally specifying a non-default distro name DISTRO.

--delete Delete the selected image(s) from the local cache.

--import FILE Import an existing tar, squashfs, or singularity image.

--capture NODE [--set-name IMAGE]
Capture image from a booted node. If the optional --set-name IMAGE is not supplied, then the tool prompts
the user for an IMAGE name to create or overwrite.

--install PKGS Install packages PKGS into the image.

--query [PKGS]
Query package versions from the image (default=ALL).

4.26. Software Images 173

ICE ClusterWare Documentation, Release 12.4.0

--update [PKGS]
Update specified packages in the image (default=ALL).

--uninstall PKGS Uninstall packages from the image.

--unpack TARGZ Unpack a tar.gz file into the image.

--execute COMMAND Execute a command in the unpacked image. Note that this COMMAND can
include KVER=<kernelVersion>, thereby overriding the default behavior of a
uname -r executing inside the image. See --chroot KVER and EXAMPLES.

--copyin SRC DEST
Copy files or directories from SRC into the image as DEST.

--copyout SRC DEST
Copy files or directories SRC out of the image to destination DEST.

--mount PATH Unpack the image into PATH and bind-mount various folders as if preparing for
--chroot. After the mount the image can be customized by other commands,
such as ansible, before being repacked.

--unmount PATH Repack the image from a previously mounted PATH.

--write-repos [DISTRO]
Write ClusterWare repository file(s) into the image.

EXAMPLES
scyld-modimg -i NewImage --query kernel,clusterware-node

Display the kernel and clusterware-node RPM versions installed in the image.

scyld-modimg -i NewImage --query

Display all RPMs installed in the image.

scyld-modimg -i NewImage --chroot

Examine and/or modify the contents of the image using chroot.

scyld-modimg -i NewImage --chroot 3.10.0-1160.45.1.el7.x86_64

Explicitly override the uname -r output when executed inside the image.

scyld-modimg -i NewImage --execute 'KVER=3.10.0-1160.45.1.el7.x86_64 uname -r'

Explicitly control the uname -r output inside the image when executing commands, e.g., in this case the
uname -r command.

scyld-modimg --capture n8 --set-name CapturedN8image --upload

Capture the image executing on node n8, give it the name "CapturedN8image", and upload it.

QUIRKS
Note that when exiting a --chroot, several directories do not get repacked and saved into the image, including /tmp/,
/var/tmp/, /var/cache/yum.

RETURN VALUES
Upon successful completion, scyld-modimg returns 0. On failure, any changes are discarded, an error message is
printed to stderr, and scyld-modimg returns 1.

174 Chapter 4. Administration

ICE ClusterWare Documentation, Release 12.4.0

4.26.4 Failing PXE Network Boot
If a compute node fails to join the cluster when booted via PXE network boot, there are several places to look, as
discussed below.

Rule out physical problems. Check for disconnected Ethernet cables, malfunctioning network equipment, etc.

Confirm the node's MAC is in the database. Search for the node by MAC address to confirm it is registered with the
ICE ClusterWare™ system:

scyld-nodectl -i 00:11:22:33:44:55 ls -l

Check the system logs. Specifically look for the node's MAC address in the api_error_log and head_*.log files.
These files will contain AUDIT statements whenever a compute node boots, e.g.,

Booting node (MAC=08:00:27:f0:44:35) as iscsi using boot config b7412619fe28424ebe1f7c5f3474009d.

Booting node (MAC=52:54:00:a6:f3:3c) as rwram using boot config f72edc4388964cd9919346dfeb21cd2c.

If there are no "Booting node" log statements, then the failure is most likely happening at the DHCP stage, and the head
nodes' isc-dhcpd.log log files may contain useful information.

As a last resort, check if the head node is seeing the compute node's DHCP requests, or whether another server is
answering, using the Linux tcpdump utility. The following example shows a correct dialog between compute node 0
(10.10.100.100) and the head node.

[root@cluster ~]# tcpdump -i eth1 -c 10
Listening on eth1, link-type EN10MB (Ethernet),

capture size 96 bytes
18:22:07.901571 IP master.bootpc > 255.255.255.255.bootps:

BOOTP/DHCP, Request from .0, length: 548
18:22:07.902579 IP .-1.bootps > 255.255.255.255.bootpc:

BOOTP/DHCP, Reply, length: 430
18:22:09.974536 IP master.bootpc > 255.255.255.255.bootps:

BOOTP/DHCP, Request from .0, length: 548
18:22:09.974882 IP .-1.bootps > 255.255.255.255.bootpc:

BOOTP/DHCP, Reply, length: 430
18:22:09.977268 arp who-has .-1 tell 10.10.100.100
18:22:09.977285 arp reply .-1 is-at 00:0c:29:3b:4e:50
18:22:09.977565 IP 10.10.100.100.2070 > .-1.tftp: 32 RRQ

"bootimg::loader" octet tsize 0
18:22:09.978299 IP .-1.32772 > 10.10.100.100.2070:

UDP, length 14
10 packets captured
32 packets received by filter
0 packets dropped by kernel

Verify that |SCW-SHORT| services are running. Check the status of clusterware services with the commands:

systemctl status clusterware
systemctl status clusterware-dhcpd
systemctl status clusterware-dnsmasq

Restart clusterware services from the command line using:

4.26. Software Images 175

ICE ClusterWare Documentation, Release 12.4.0

sudo systemctl restart clusterware

Check the switch configuration. If the compute nodes fail to boot immediately on power-up but successfully boot
later, the problem may lie with the configuration of a managed switch.

Some Ethernet switches delay forwarding packets for approximately one minute after link is established, attempting
to verify that no network loop has been created ("spanning tree"). This delay is longer than the PXE boot timeout on
some servers.

Disable the spanning tree check on the switch. The parameter is typically named "fast link enable".

4.26.5 Creating Local Repositories without Internet
When scyld-install (and its underlying use of the yum command) do not have access to repositories that are acces-
sible via the Internet, then repositories must be set up on local storage.

First ensure that the appropriate base distribution repositories (i.e., Red Hat RHEL or CentOS) are also accessible
locally without requiring Internet access. An initial install of ICE ClusterWare™ has dependencies on various base
distribution packages, and a subsequent ClusterWare update may have dependencies on new or updated base distribution
packages.

Next you need a ClusterWare ISO file that contains the desired software. The easiest way to obtain an ISO file
is to download a pre-built ISO from the ClusterWare online repository. To do this, log into https://updates.
penguincomputing.com/clusterware/12/ using your ClusterID as the username, leaving the password field blank. Once
logged in, select the EL7, EL8 or EL9 folder as desired. Within these folders are "iso" folders, where pre-built ISOs
can be downloaded.

Alternatively, it's possible to build the ISO on a local server that has access to the Internet. To build the ISO locally,
you need a clusterware.repo file that contains a valid customer authentication token that allows access to Penguin
Computing's ClusterWare yum repo, then:

Download the ClusterWare `make-iso` script:
curl -O https://updates.penguincomputing.com/clusterware/12/installer/make-iso

Execute the `make-iso` script to create either an ISO named "clusterware.iso":
./make-iso --yum-repo ./clusterware.repo
Or to create an arbitrarily named ISO:
sudo ./make-iso --yum-repo ./clusterware.repo clusterware-12.1.0.iso

Note: `./make-iso --from-yum` is equivalent to
`./make-iso --yum-repo /etc/yum.repos.d/clusterware.repo`

Once an ISO file is obtained, whether via download or the make-iso command, the ISO file needs to be mounted.
Suppose the ISO file clusterware-12.1.0.iso contains ClusterWare release 12.1.0:

Mount the ClusterWare ISO, if not already mounted:
sudo mount -o loop clusterware-12.1.0.iso /mnt/cw12.1.0

For an initial install, use a cluster configuration file (e.g., named cluster-conf) that is described in Install ICE
ClusterWare, and execute the scyld-install script that is embedded in the ISO to performs the basic first install of
the ClusterWare platform and create /etc/yum.repos.d/clusterware.repo, which points at the software in the
ISO:

/mnt/cw12.1.0/scyld-install --config cluster-conf

Once the head node software has been installed, then subsequent ClusterWare commands need to find a base distribution
defined repo and distro. See Creating Arbitrary Rocky Images (or Creating Arbitrary RHEL Images) for examples.

176 Chapter 4. Administration

https://updates.penguincomputing.com/clusterware/12/
https://updates.penguincomputing.com/clusterware/12/

ICE ClusterWare Documentation, Release 12.4.0

Suppose the base distribution ISO is accessible at http://<baseOSserver>/<baseOSiso>:

scyld-clusterctl repos create name=<baseOSrepo> iso=@</path/to/baseOSiso>

scyld-clusterctl distros create name=<baseOSdistro> repos=<baseOSrepo>

Now finish the setup. The following expects to find a single distro and one or more repo repositories:

scyld-add-boot-config --make-defaults

For a software update of an existing install, rename the current /etc/yum.repos.d/clusterware.repo, then
execute the script (which recreates clusterware.repo with the appropriate values):

(cd /etc/yum.repos.d; sudo mv -f clusterware.repo clusterware.repo.bak)

/mnt/cw12.1.0/scyld-install

s Important

If the local repo has been created in a manner other than what is described above, then it is possible that /etc/
yum.repos.d/clusterware.repo uses baseurl of the form file:/// (e.g., baseurl=file:///var/www/html/
cw12.1.0). This may cause future problems when attempting to create an image, so the administrator should edit
this to a functionally equivalent form http:// (e.g., baseurl=http://localhost/cw12.1.0).

4.26.6 Validating ClusterWare ISOs
To validate a downloaded ICE ClusterWare™ ISO file, first import the gpg key that was used to sign the RPMs and
ISOs:

curl -sSL https://updates.penguincomputing.com/RPM-GPG-KEY-scyld-clusterware | gpg --
→˓import -

Then download the CHECKSUM.asc file from the repo, e.g,:

wget https://<AUTHENTICATION_TOKEN>@updates.penguincomputing.com/clusterware/12/el8/iso/
→˓CHECKSUM.asc

and verify the CHECKSUM.asc file:

[admin@head]$ gpg --verify CHECKSUM.asc
gpg: Signature made Thu 05 Jan 2023 07:01:37 PM PST using DSA key ID 0A1E1108
gpg: Good signature from "Penguin Computing <support@penguincomputing.com>"
gpg: WARNING: This key is not certified with a trusted signature!
gpg: There is no indication that the signature belongs to the owner.
Primary key fingerprint: AEFA 2C55 EB4A 88EF BE71 022B 0722 4B0A 0A1E 1108

Confirm that the downloaded ISO is named in CHECKSUM.asc. For example, for clusterware-11.9.2-g0000.
el8.x86_64.iso:

grep clusterware-11.9.2-g0000.el8.x86_64.iso CHECKSUM.asc

should find the ISO. Now compare the checksum of the ISO with the ISO named in CHECKSUM.asc:

4.26. Software Images 177

http:/

ICE ClusterWare Documentation, Release 12.4.0

diff <(sha256sum clusterware-11.9.2-g0000.el8.x86_64.iso) \
<(grep clusterware-11.9.2-g0000.el8.x86_64.iso CHECKSUM.asc)

and expect to see no differences.

4.26.6.1 make-iso

NAME
make-iso -- Create an ISO file from a yum repo.

USAGE
make-iso

[-h] <RPM-SOURCE> [ISOFILE]

DESCRIPTION
This is a low-level tool that creates an ISO file, optionally named ISOFILE, from a yum repo file or from collection of
RPMs from RPM-SOURCE.

The tool resides in /opt/scyld/clusterware-installer/make-iso.

<RPM-SOURCE> OPTIONS
--from-yum Mirror RPMs from the baseurl(s) in /etc/yum.repos.d/clusterware.repo.

--rpm-dir DIR Copy the RPMs from the directory DIR.

--yum-repo REPOFILE Parse a specific repo file REPOFILE for RPM sources.

OPTIONAL ARGUMENTS
-h, --help Print usage message and exit. Ignore trailing args, parse and ignore preceding

args.

EXAMPLES
(Note that make-iso resides in /opt/scyld/clusterware/installer/)

make-iso --yum-repo /tmp/clusterware.repo

Use the RPMs identified by the yum repo file /tmp/clusterware.repo to create an ISO named cluster-
ware.iso.

make-iso --from-yum

Equivalent to make-iso --yum-repo /etc/yum.repos.d/clusterware.repo.

make-iso --yum-repo /tmp/clusterware.repo cw12.1.iso

Use the RPMs identified by the yum repo file /tmp/clusterware.repo to create an ISO named
cw12.1.iso.

make-iso --rpm-dir /mnt/clusterware/12.0/el7 cw12.0.iso

Use the RPMs found in /mnt/clusterware/12.0/el7/ to create an ISO named cw12.0.iso.

RETURN VALUES
Upon successful completion, make-iso returns 0. On failure, an error message is printed to stderr and make-iso
returns 1.

178 Chapter 4. Administration

ICE ClusterWare Documentation, Release 12.4.0

4.27 Image Sources Page
The Image Sources page shows the defined distributions and allows you to create or modify distros. The page is available
via Provisioning + SW > Image Sources (OS) in the left navigation panel.

4.27.1 Create a Distro
To create a distro:

1. Click Add Distro.

2. Add details about the distro.

• Name: Required.

• Description: Optional.

• Repos: Optional.

• Packaging: Optional.

• Release: Optional.

3. Click Update to save your changes.

The new distro appears in the list at the top of the page.

4.27.2 Edit a Distro
To edit a distro:

1. Click the distro name to open the details panel.

2. Click the edit icon (pencil) to enable changes.

3. Make updates to the distro.

4. Click Update to save your changes.

4.27. Image Sources Page 179

ICE ClusterWare Documentation, Release 12.4.0

4.27.3 Delete a Distro
To delete a distro, click the ellipsis (...) on the far right of the row and select the Delete action.

4.27.3.1 Related Links

• Repos and Distros

• scyld-modimg

4.28 Git Repositories
ICE ClusterWare™ head nodes can host Git repositories containing code or configuration files needed by compute
nodes. These Git repositories can be used to enable compute nodes to run Ansible during boot up or to pull down
version-controlled config files. The ClusterWare platform can directly host the Git repository on the head node, storing
the files locally and allowing for modifications by local developers. Alternatively, the ClusterWare head nodes can
be leveraged as a synchronization point for tracking upstream repositories. In the latter case, development work is
primarily done on the upstream Git repository and ClusterWare tools can be used to sync or pull any changes down
to the local copy. In both cases, the Git repositories are exported into the cluster for use with Ansible, Puppet, or as
repositories of configuration files for initialization and boot-up.

4.28.1 Initial Preparation
To facilitate interaction with the ClusterWare Git system, first add your personal public key to your ClusterWare admin
account. This key is populated into the root user's (or _remote_user's) authorized_keys file for a newly booted
compute node. The key is then used to provide SSH access to the Git repository.

1. To add the key to the admin record, run the following command:

scyld-adminctl up keys=@/full/path/.ssh/id_rsa.pub

2. Add the localhost's host keys to a personal known_hosts file with the following command:

ò Note

Adding the localhost’s host key is not strictly necessary, but adding it avoids an SSH warning that can interrupt
scripting.

ssh-keyscan localhost >> ~/.ssh/known_hosts

4.28.2 Locally Hosted Repositories
The scyld-clusterctl tool is used to create, update, and delete gitrepos objects in the ClusterWare database.

To create a new gitrepos object:

scyld-clusterctl gitrepos create name=gtest

To view the details of the gitrepos object:

scyld-clusterctl gitrepos ls -l
Git Repos
gtest
archive

(continues on next page)

180 Chapter 4. Administration

ICE ClusterWare Documentation, Release 12.4.0

(continued from previous page)

content
chksum: sha1:b0b06c1d5acbcfc1e5a38314f31af6f3d8b4b63b
filename: 50a2cc42303f4bf98c71c09b9e0d2adf
mtime: 2024-08-02 18:41:43 UTC (0:42:47 ago)
size: 12.0 KiB (12288 bytes)

last_modified: 2024-08-02 18:41:43 UTC (0:42:47 ago)
name: gtest
sshgit: cwgit@<HEAD>:gtest
url: <BASE_URL>/git-http/gtest

The main field of interest is sshgit, which can be used in Git operations. For example, to clone a copy of the gitrepos
object:

git clone cwgit@192.168.122.88:gtest
Cloning into 'gtest'...
remote: Enumerating objects: 3, done.
remote: Counting objects: 100% (3/3), done.
remote: Compressing objects: 100% (2/2), done.
remote: Total 3 (delta 0), reused 0 (delta 0), pack-reused 0 (from 0)
Receiving objects: 100% (3/3), done.

By default, a single file is added in the otherwise empty repository: CwReadMe.txt. At this point, the repository on
the local disk can be used like any other Git repository. For example, to create a new file in the directory:

cd gtest/
ls
CwReadMe.txt
echo "new file" > NewFile.txt
git add NewFile.txt
git commit -m "add new file"
[main 89d5f44] add new file
1 file changed, 1 insertion(+)
create mode 100644 NewFile.txt

Since authentication occurs via SSH keys, you can push the changes back to the ClusterWare-hosted Git repos:

git push
Enumerating objects: 4, done.
Counting objects: 100% (4/4), done.
Delta compression using up to 4 threads
Compressing objects: 100% (2/2), done.
Writing objects: 100% (3/3), 286 bytes | 286.00 KiB/s, done.
Total 3 (delta 0), reused 0 (delta 0), pack-reused 0
To 192.168.122.88:gtest
d5a1a0b..89d5f44 main -> main

The “url” includes an HTTP-based URL that can also be used for Git download operations, but does NOT allow new
data to be pushed up to the ClusterWare head node.

4.28. Git Repositories 181

ICE ClusterWare Documentation, Release 12.4.0

4.28.3 Mirroring Upstream Resources
In many cases, ClusterWare Git repositories are used to mirror upstream repos. Developers can work with standard
tools and interact with an enterprise Git service, such as GitLab or GitHub, without needing direct contact to the cluster.
The ClusterWare platform can synchronize the locally-hosted copy with the upstream repository.

When creating the gitrepos object, specify a name, an upstream source, and a mapping for local-to-upstream
branches:

scyld-clusterctl gitrepos create name=gtest2 \
upstream=http://192.168.122.88/api/v1/git-http/gtest \
branch_map=main:main

In this example, only one branch is defined and it shares the same name (main) in the local and upstream repos. For more
complex configurations, a comma-separated list of local-to-upstream mappings can be provided, and the local/upstream
names do not need to be the same. For example: “main:main,cw_dev:up_dev” defines two mappings. The first maps
the local “main” to upstream “main” and the second maps local “cw_dev” to the upstream “up_dev”.

Since the ClusterWare platform creates a minimal Git repository by default (with a CwReadMe.txt file), it is often
necessary to “sync” and “sync reset” so that the local repos downloads the relevant metadata from the upstream repos,
and then pulls down the current upstream contents. For example:

scyld-clusterctl gitrepos -igtest2 sync
Git Repos
gtest2
Branch 'main' is 1 commit ahead of and 3 commits behind branch 'upstream/main'

scyld-clusterctl gitrepos -igtest2 sync reset
Git Repos
gtest2
Branch 'main' reset to branch 'upstream/main'

ò Note

This extra “reset” is caused by the placeholder content that ClusterWare v.12.4.0 creates. This may change in future
releases.

When new upstream changes are made, pull the changes to the local copy using the following command:

scyld-clusterctl gitrepos -igtest2 sync pull
Git Repos
gtest2
Branch 'main' reset to branch 'upstream/main'

Next, re-sync any clients that might need that new data (for example, all of the compute nodes):

git pull

4.28.4 Public Access
For development and testing of the config files and code in a Git repository, authenticated access is needed so that the
git push commands work. The ClusterWare platform can also provide public access to any gitrepos hosted on the
head nodes.

The base URL for public access is found in the scyld-clusterctl output:

182 Chapter 4. Administration

ICE ClusterWare Documentation, Release 12.4.0

scyld-clusterctl gitrepos ls --fields url -l
Git Repos
gtest
url: <BASE_URL>/git-http/gtest

For the above example, public access can be found at:

git clone http://192.168.122.88/api/v1/git-http/gtest
Cloning into 'gtest'...
remote: Enumerating objects: 6, done.
remote: Counting objects: 100% (6/6), done.
remote: Compressing objects: 100% (4/4), done.
remote: Total 6 (delta 0), reused 0 (delta 0), pack-reused 0 (from 0)
Receiving objects: 100% (6/6), done.

In this example, if another file is added and pushed back to the ClusterWare gitrepos object, the push will fail. Even
if SSH keys have been loaded, this is using a public URL, which disallows upload of new content:

echo "another file" > AnotherFile.txt
git add AnotherFile.txt
git commit -m "adding another file"
[main b900bf1] adding another file
1 file changed, 1 insertion(+)
create mode 100644 AnotherFile.txt
$ git push
fatal: unable to access 'http://192.168.122.88/api/v1/git-http/gtest/': The requested␣
→˓URL returned error: 403

If public access to a gitrepos needs to be disabled for some reason, setting the “public” field to False blocks access:

scyld-clusterctl gitrepos -igtest update public=False

4.29 Git Repositories Page
The Git Repositories page lists each locally hosted Git Repo with a clickable link to details, whether it is public or not,
the URL to the bare repo (and contents), and the argument used to clone the repository via ssh. The page is available
via Provisioning + SW > Git Repos in the left navigation panel.

Git repositories hosted by ICE ClusterWare™ head nodes are useful for automated configuration systems. For example,

4.29. Git Repositories Page 183

ICE ClusterWare Documentation, Release 12.4.0

a Git repository hosted by a head node could contain an Ansible playbook. For an example implementation, see Using
Ansible.

4.29.1 Create Git Repo
To create a Git repository:

1. Click Add Git Repo.

2. Add details about the Git repository. The following fields are available:

• Name: Required.

• Description: Optional.

• Public: Indicate whether the Git repository is public or private. Set to Public by default.

• Upstream: Optional. Provide the URL for the Git repository to define a mirror of the upstream.

3. Click Add Git Repo to save your changes.

The new Git repository appears in the list at the top of the page.

4.29.2 Edit Git Repo
To edit a Git repository:

1. Click the Git repository name to open the details panel for that repository.

2. Click the edit icon (pencil) to enable changes.

3. Make updates to the Git repository.

4. Click Update to save your changes.

4.29.3 Clone Git Repo
When copying the Cloning argument using the copy icon, a subsequent paste replaces the "<HEAD>" string with the
actual IP address from the current GUI website URL.

4.29.4 Delete Git Repo
To delete a Git repository, click the ellipsis (...) on the far right of the row and select the Delete action.

4.29.5 Related Links
• Git Repositories

• scyld-clusterctl

• Using Ansible

4.30 State Maps
A common task for a cluster administrator is identifying specific nodes that are out of compliance in some way and
executing actions to solve such issues. These actions often involve temporarily removing the node(s) from production
while performing testing, reprovisioning, and requalification. As problem nodes are identified, new nodes are added, or
nodes are transferred from one configuration to another, the cluster administrator must have some means to keep track
of the progress of each node through these processes. After all, these processes involve multiple stages, likely spanning
multiple reboots or even reimaging. ICE ClusterWare™ node attributes can be leveraged for persistently storing this
progress information.

184 Chapter 4. Administration

ICE ClusterWare Documentation, Release 12.4.0

For example, when a node health check detects a memory issue on a GPU, other tasks may dictate that power cycling
the node for row remapping cannot occur immediately. Instead, the health checking code could set an attribute noting
what was detected. Then, a separate process could see that attribute and initiate the steps of removing the node from
production, rebooting it, triggering requalification tests, and moving it back into production if all goes well.

Of course, this simple detection and mitigation process only covers one type of failure and one possible resolution. The
GPU or other hardware could fail in a myriad of ways, each requiring different mitigation strategies. This means that
a node’s health check results or progress through requalification may be stored across multiple node attributes.

The ClusterWare node selection language allows a cluster administrator to identify nodes that match possibly complex
criteria by matching attribute values, detected status, or hardware details using basic comparators and logical operators.
See the above section Attribute Groups and Dynamic Groups for dynamic groups for examples of node selectors.

Polling the ClusterWare service for attribute status frequently or across many nodes is inefficient and in extreme
cases can impact the head node performance. To alleviate this, the ClusterWare platform provides a scyld-nodectl
waitfor mechanism. One common use is to wait for a node to boot before proceeding with additional steps in an
overall command, for example:

scyld-nodectl -in10 reboot then waitfor up then exec uptime

The up is shorthand for a longer selector, specifically status[state] == “up” and can be replaced with more com-
plicated selectors if, for example, the administrator is not rebooting the node but executing a command that will modify
a node attribute when it completes. This sort of command chaining with “then” allows for simple automation, but more
complex automation will deal with multiple nodes at different stages. For that case, the ClusterWare platform allows
administrators to provide a set of selectors referred to as a state map.

Using a state map, a cluster administrator can track nodes through scenarios including: * Error detection, handling,
and requalification * A rolling firmware update process * Idle-time performance testing

State maps provide a general purpose mechanism to select groups of nodes based on their status and configuration, trig-
ger actions, and observe the resulting changes. An example state map is provided as part of the clusterware-tools
package:

$ cat /opt/scyld/clusterware-tools/examples/node-states.ini
[status]
up = status[state] == "up"
down = status[state] == "down"
booting = status[state] == "booting"

This INI format defines a state map named “status” containing 3 states named “up”, “down”, and “booting”. The
selector that defines each state is provided to the right of the name, after the equal sign. This file can also be written in
JSON format as:

{
"name": "status",
"states": {

"up": "status[state] == \"up\"",
"down": "status[state] == \"down\"",
"booting": "status[state] == \"booting\""

}
}

The cluster administrator can load the state map through the scyld-nodectl command:

scyld-nodectl waitfor --load-only @node-status.json

4.30. State Maps 185

ICE ClusterWare Documentation, Release 12.4.0

Once the state map is loaded, the waitfor command can also be used to see what nodes match what selectors by
referencing the loaded map name, i.e. “status” in this example:

$ scyld-nodectl waitfor --name status
Nodes
n[5-8,10]: up

Additional arguments are available to allow for streaming state transitions or simplifying the output for easier parsing:

$ scyld-nodectl waitfor --stream --name status
n[1-4] in down
n[5-10] in up

n[5] left up
n[5] entered down
n[5] left down
n[5] entered booting
n[5] left booting
n[5] entered up

In the above example, a single node in a 10 node cluster was rebooted and state transitions were emitted as the node
progressed from “up” to “down” to “booting” and back to “up”.

4.31 Grafana Telemetry Dashboard

4.31.1 Introduction to Grafana and InfluxDB
InfluxDB is a database that is optimized for time-series data and analytics.

Grafana is a powerful and flexible dashboard and visualization tool from Grafana Labs (https://grafana.com/). It is
available as Open-Source software, but Grafana Labs does offer commercial support as well.

4.31.1.1 InfluxDB

While InfluxDB is technically a separate tool, the Telegraf data collection tool is created by the same company and
provides optimized "plugins" which can push a variety of metrics into InfluxDB. Both tools are Open-Source but com-
mercial support is available through InfluxData Inc. (https://www.influxdata.com/). There is a vibrant community of
users and plugin developers, and the official community forum at https://community.influxdata.com/ often has answers
directly from the InfluxData team.

The InfluxDB database can currently be queried through the Flux language, a powerful data scripting and processing
language. Documentation for Flux can be found at https://docs.influxdata.com/flux/v0/. As a simple example, a query
to find the CPU usage data for all nodes in the cluster is shown below:

from(bucket: "telegraf")
|> range(start: v.timeRangeStart, stop: v.timeRangeStop)
|> filter(fn: (r) => r["_measurement"] == "cpu")
|> filter(fn: (r) => r["_field"] == "usage_system")

This example illustrates a typical approach to querying and filtering data in InfluxDB/Flux. First, a stream of records is
pulled from a "bucket" (similar to a table in relational databases). That stream may include multiple metrics stored in
multiple measurements and fields. A given Telegraf data collection cycle, for example, may include CPU and memory
measurements, and each of those may have multiple fields of information: the CPU measurement may have per-CPU-
core data, the memory measurement may have total, used, and free memory values. Each of those measurement-field
combinations will be a separate record in the stream.

186 Chapter 4. Administration

https://grafana.com/
https://www.influxdata.com/
https://community.influxdata.com/
https://docs.influxdata.com/flux/v0/

ICE ClusterWare Documentation, Release 12.4.0

It is often useful to reduce the time-range early in the query, otherwise all records from all time will be processed by the
stages of the query. The "earlier" the stream's data is reduced, the greater a speed-up will be seen in the query process.
In this example, the range is reduced to whatever has been selected by the GUI, with the "v." notation being used to
reference one of the dashboard-shared "variables". Since a measurement can include multiple fields, it is useful to
filter on measurement next since it will often provide another large reduction in the amount of stream data. Additional
filtering on specific field information can be used to further refine the data.

Data Retention

By default, the ICE ClusterWare™ platform retains 7 days of InfluxDB data. You can adjust the retention time and
frequency of downsampling. A primary concern in adjusting these intervals is available disk space.

To update the InfluxDB data retention:

1. Obtain the bucket-id by running:

influx bucket list

2. Update the InfluxDB bucket retention by running:

influx bucket update -i <bucket-id> -r <retention period with units>

To adjust downsampling, you need both a source and destination bucket. Then you create a task that runs a script to
downsample data after a certain period of time. See the following InfluxData documentation for details:

• Creating a new bucket: https://docs.influxdata.com/influxdb/v2/admin/buckets/create-bucket/

• Creating a task: https://docs.influxdata.com/influxdb/v2/process-data/manage-tasks/create-task/

• Downsampling data requirements and example: https://docs.influxdata.com/influxdb/v2/process-data/
common-tasks/downsample-data/

If you want to visualize your downsampled data with Grafana, reference the appropriate bucket in your queries.

Learn More

The official documentation from InfluxData is very good, and includes examples and videos.

• Getting started: https://docs.influxdata.com/flux/v0/get-started/

• InfluxDB University includes training materials and videos: https://www.influxdata.com/university/ and https:
//university.influxdata.com/

– The "Data Querying" section includes Basic, Beginner, and Intermediate courses in the Flux language

It should be noted that in August 2023, InfluxData announced plans to de-prioritize their future investments in Flux
and to put the project into "maintenance mode". They explicitly state that Flux is not going End-Of-Life, and that they
do anticipate supporting customers for some time to come. InfluxData also offers an SQL-like language, InfluxQL, and
has plans for full SQL in version 3 of the InfluxDB database, so there will be a path forward regardless.

• Future of Flux: https://docs.influxdata.com/flux/v0/future-of-flux/

• SQL-like alternatives: https://docs.influxdata.com/influxdb/v2/query-data/influxql/ and https://docs.influxdata.
com/influxdb/clustered/query-data/

The ClusterWare platform is fully committed to providing a robust monitoring and alerting platform. As InfluxData's
roadmap becomes more firm, the ClusterWare platform will update its roadmap accordingly.

4.31. Grafana Telemetry Dashboard 187

https://docs.influxdata.com/influxdb/v2/admin/buckets/create-bucket/
https://docs.influxdata.com/influxdb/v2/process-data/manage-tasks/create-task/
https://docs.influxdata.com/influxdb/v2/process-data/common-tasks/downsample-data/
https://docs.influxdata.com/influxdb/v2/process-data/common-tasks/downsample-data/
https://docs.influxdata.com/flux/v0/get-started/
https://www.influxdata.com/university/
https://university.influxdata.com/
https://university.influxdata.com/
https://docs.influxdata.com/flux/v0/future-of-flux/
https://docs.influxdata.com/influxdb/v2/query-data/influxql/
https://docs.influxdata.com/influxdb/clustered/query-data/
https://docs.influxdata.com/influxdb/clustered/query-data/

ICE ClusterWare Documentation, Release 12.4.0

4.31.1.2 Grafana

Besides drawing charts and graphs, Grafana can provide alerting capabilities and, through the Loki plugin, may be
used for log aggregation and analysis.

At a high level, a Grafana dashboard is a set of "panels" where each panel is a query against a "data source" along with a
visualization for the resulting data. When the ClusterWare platform is installed, the InfluxDB data-source is configured,
which connects to the InfluxDB/Telegraf data; it also comes with a cluster-wide and single-node dashboards. Either of
those can be copied and then customized to meet any local needs.

When adding panels to a dashboard, note that it will show up as a blank panel of some default size. The corners of the
panel can easily be clicked and dragged to be any size, but to change the query or visualization type requires editing the
panel through the menu on the top-bar of the panel (look for the small triangle symbol). Keep in mind that since the
query will, by default, be empty, there may be no data for the panel to display. As such, it may be helpful to start with
the "table" visualization while working on the query since this will give more direct feedback even if the query itself is
in error or if it's producing different kind of data than expected. Once the query is refined, then a proper visualization
type can be selected for that data.

Note that since the ClusterWare installation configures the InfluxDB data-source to use the Flux language, all queries
in Grafana must also use the Flux language.

Extensive GrafanaLabs documentation is available on-line:

• General overview of dashboards: https://grafana.com/docs/grafana/latest/dashboards/

• Panels and visualizations: https://grafana.com/docs/grafana/latest/panels-visualizations/

– Grafana includes scatter, line, bar, and pie charts, tables, gauges, tables, and more.

– All of the visualization types can be customized in terms of color, font, etc. And many of them have
thresholding features to highlight only data above (or below) some threshold.

• Panels and dashboards can be made interactive through the use of "variables" that are shared across a dashboard,
and through "data links" which enable hyperlinks from data values to other dashboards or panels.

– Dashboard variables: https://grafana.com/docs/grafana/latest/dashboards/variables/

– Panel data-links: https://grafana.com/docs/grafana/latest/panels-visualizations/configure-data-links/

∗ For example, clicking on a node's name in the ClusterWare Cluster Overview dashboard will link to
the node-specific dashboard.

• Alerting: https://grafana.com/docs/grafana/latest/alerting/

– Alerts are essentially a query (Flux language) that is run periodically and if any records emitted by that
query are above a threshold, then an alert is generated. The output can be as simple as an email sent to
one or more recipients, or a connection to one or more external "contact points" such as PagerDuty, Sensu,
Slack, etc.

• The main tutorials, including videos and quick-start guides: https://grafana.com/tutorials/

• Grafana Labs has a set of "Grafana for Beginners" videos at YouTube: https://www.youtube.com/playlist?list=
PLDGkOdUX1Ujo27m6qiTPPCpFHVfyKq9jT

– The whole series is a broad overview of observability and monitoring, the dashboard and visualization
information in Episodes 8 and 9 may be of particular interest.

4.31.2 Grafana Setup Script
The influx_grafana_setup script is used during the install or upgrade process to set up, update, and manage the ICE
ClusterWare™ monitoring tools. When the script is run, InfluxDB, Telegraf, and Grafana are installed or updated.

The script includes steps for:

188 Chapter 4. Administration

https://grafana.com/docs/grafana/latest/dashboards/
https://grafana.com/docs/grafana/latest/panels-visualizations/
https://grafana.com/docs/grafana/latest/dashboards/variables/
https://grafana.com/docs/grafana/latest/panels-visualizations/configure-data-links/
https://grafana.com/docs/grafana/latest/alerting/
https://grafana.com/tutorials/
https://www.youtube.com/playlist?list=PLDGkOdUX1Ujo27m6qiTPPCpFHVfyKq9jT
https://www.youtube.com/playlist?list=PLDGkOdUX1Ujo27m6qiTPPCpFHVfyKq9jT

ICE ClusterWare Documentation, Release 12.4.0

• Creating the InfluxDB bucket and API token

• Installing and setting up Telegraf to write to InfluxDB

• Installing Grafana

• Setting up the Grafana admin password and API key

• Connecting the InfluxDB datasource

Running this script outside of the install or upgrade process is not common, but may be needed to clear the InfluxDB
database contents or reset a password back to a known state.

The script is located at /opt/scyld/clusterware/bin/influx_grafana_setup

4.31.2.1 Arguments

• --purge: Provides a complete monitoring reset by clearing all telegraf data from InfluxDB and resetting Grafana
configuration (password included) to the ClusterWare default.

• --reset-grafana: Rebuilds the Grafana sqlite database to base ClusterWare configuration. This includes
resetting the admin password, reconnecting the InfluxDB datasource, and clearing any custom configurations
including Alerts, Dashboards, API keys, and AdHoc users.

• --tele-env: Adds the InfluxDB API token as an environment variable. The environment variable is stored in
the /etc/default/telegraf directory.

• --tele-input: This is a legacy/backwards compatible option to insert the InfluxDB API token directly into the
telegraf.conf file. Requires both --tele-input and --tele-output.

• --tele-output: This is a legacy/backwards compatible option to insert the InfluxDB API token directly into
the telegraf.conf file. Requires both --tele-input and --tele-output.

4.31.2.2 Example

Clear existing telemetry data and Grafana configurations and reset to a fresh install configuration:

/opt/scyld/clusterware/bin/influx_grafana_setup --purge

Clear Grafana configurations and return to a fresh install configuration while maintaining telemetry data:

/opt/scyld/clusterware/bin/influx_grafana_setup --reset-grafana

4.31.3 Grafana Login
The ICE ClusterWare™ Monitoring graphical interface employs the Open Source Grafana, InfluxDB, and Telegraf to
collect data from compute nodes and head nodes and present the data visually to authorized users. The basic initial-
ization directs InfluxDB to retain data for one week. The retention period can be modified:

TELEGRAF_BUCKET_ID=$(sudo influx bucket list | grep telegraf | awk '{print $1}')
sudo influx bucket update --id ${TELEGRAF_BUCKET_ID} --retention <new-period>

where <new-period> is an integer concatenated with a one-letter abbreviation of a time period, e.g., "7d" or "1w" for
one week, "14w" for 14 weeks, "12h" for 12 hours, "1y" for one year. The longer the retention period means the greater
the size of retained data. See https://docs.influxdata.com/influxdb/v2.6/reference/internals/data-retention/ for details.

Access the Monitoring GUI through the Health + Monitoring > Telemetry Dashboard link in the ClusterWare left
navigation panel or directly using http://<HEADNODE_IP>/grafana.

4.31. Grafana Telemetry Dashboard 189

https://docs.influxdata.com/influxdb/v2.6/reference/internals/data-retention/

ICE ClusterWare Documentation, Release 12.4.0

ò Note

The URL http://<HEADNODE_IP>/grafana may differ if the cluster administrator has switched to HTTPS or
otherwise modified the Apache configuration.

When the home page is loaded for the first time, login with username "admin" and the database.admin_pass from the
base.ini (sudo grep pass /opt/scyld/clusterware/conf/base.ini). After that, you can change the user
name and/or the password as you wish by clicking on the colored icon in the lower left above the "?" question mark to
expose a menu allowing you to view or change "Preferences", "Change Password", or "Sign out".

Typically after the initial "admin" database.admin_pass login the user should first edit the Preferences to change the
user's Name, Email address, and the Username to use for subsequent logins. Then click on "Change Password" and
change the password you wish to use for those subsequent logins.

A basic Grafana Monitoring capability is installed preconfigured in the ClusterWare software. You can further modify
this configuration to suit your local cluster needs. New dashboards can be created, or new display panels added to the
existing ones to show more customized information. Grafana includes a suite of visualization tools like scatter, line,
bar, and pie charts, as well as tables, gauges, and histograms. Since the underlying ClusterWare monitoring database is
InfluxDB, any valid Flux-language query can be used to filter or process the data. For more information on InfluxDB
and Grafana customization, including links to tutorials, see InfluxDB and Grafana.

To facilitate monitoring of compute node GPU activity, first install into the GPU compute node image(s) the
NVidia System Management Interface utility (nvidia-smi), which ships with NVidia GPU drivers. See https:
//developer.nvidia.com/nvidia-system-management-interface for details of that utility, and see https://www.cyberciti.
biz/faq/how-to-install-nvidia-driver-on-centos-7-linux/ for a description of how to install NVidia drivers. Then in
the compute node image(s) copy /etc/telegraf/telegraf.d/nvidia-smi.conf.example (distributed in the
clusterware-node RPM) to /etc/telegraf/telegraf.d/nvidia-smi.conf.

4.31.4 Grafana Cluster Monitoring
The ClusterWare - Cluster Monitoring dashboard displays a summary of current activity on the head node and all
compute nodes and is shown upon intial login.

The following example shows the head node and first several nodes of a 49-node cluster.

190 Chapter 4. Administration

https://developer.nvidia.com/nvidia-system-management-interface
https://developer.nvidia.com/nvidia-system-management-interface
https://www.cyberciti.biz/faq/how-to-install-nvidia-driver-on-centos-7-linux/
https://www.cyberciti.biz/faq/how-to-install-nvidia-driver-on-centos-7-linux/

ICE ClusterWare Documentation, Release 12.4.0

4.31.4.1 Grafana General Page

Click General / ClusterWare - Cluster Monitoring at the top of the page to display a list of the available dashboards.

The menu lists the Recent dashboards as well as the full General list. Click ClusterWare - Node Monitoring to
display detailed state and activity data for individual nodes.

4.31.4.2 Grafana Node Monitoring

The default Node Monitoring display shows details for individual nodes, beginning with the head node.

4.31. Grafana Telemetry Dashboard 191

ICE ClusterWare Documentation, Release 12.4.0

Click the drop-down list with the current node name at the top left of the dashboard to select a different node in the
cluster.

For example, select "n02.cluster.local":

4.31.4.3 Grafana Alerts

You can define an Alerts dashboard with configurable panels and alert notifications.

1. Click the Alerting menu item (bell icon) in the left navigation panel.

2. On the Alert Rules tab, click New alert rule.

192 Chapter 4. Administration

ICE ClusterWare Documentation, Release 12.4.0

3. Define the conditions or events about which you want to receive alerts as well as how those alerts should be
delivered to you.

Consult the GrafanaLabs documentation for additional details.

An example Alerts dashboard is:

The first panel displays the CPU load levels for the first 10 compute nodes. The second panel displays the disk usage
for one head node.

Alerts can be edited by clicking the title bar and selecting Edit from the drop-down menu. In the example below, the
Query tab defines what gets shown in the panel. The Alert tab defines what values trigger an alert, what to send in an
alert message, and where to send the message.

4.31. Grafana Telemetry Dashboard 193

ICE ClusterWare Documentation, Release 12.4.0

See the GrafanaLabs documentation for details about setting up alerts.

4.32 Workload Management

4.32.1 Monitoring Scheduler Info

s Important

This software is a TECHNOLOGY PREVIEW that is being rolled out with limited features and limited support.
Customers are encouraged to contact Penguin with suggestions for improvements, or ways that the tool could be
adapted to work better in their environments.

The ICE ClusterWare™ platform provides a separate daemon process that reads data from one or more inputs and
pushes that data into one or more endpoints. The supported inputs are the Slurm batch scheduler and ClusterWare
itself. The supported outputs are ClusterWare, InfluxDB, or an archive file. By selecting appropriate inputs and outputs,
one could read data from the ClusterWare software and write it into InfluxDB, or read from Slurm and write into the
ClusterWare software.

The scheduler data will show up in the ClusterWare node attributes and can then be viewed with:

$ scyld-nodectl ls -l
Nodes
n0
attributes
_boot_config: DefaultBoot
_sched_state: idle

(continues on next page)

194 Chapter 4. Administration

ICE ClusterWare Documentation, Release 12.4.0

(continued from previous page)

_sched_extra: Node is idle
_sched_full: { ... full JSON blob }

Loosely speaking, _sched_state is a one-word summary of the state of the node (allocated, idle, down);
_sched_extra is a one-line summary, potentially giving basic info on why the node might be in that state (e.g. not
responding to pings might lead to a "down" indicator); and _sched_full is a JSON dump of all the information the
scheduler provided for that node.

With the data in the nodes' attributes, admins can then use those attributes to select groups of nodes and target them
with an action. For example, to list all nodes where Slurm is idle:

$ scyld-nodectl -s "attributes[_sched_state]==idle" ls
Nodes
n0
n1
n2

One could similarly reboot all "down" nodes, or remotely execute a command to restart slurmd on any problematic
nodes.

ò Note

At present, only the Slurm scheduler is supported, though other batch schedulers will likely be supported in the
future.

4.32.1.1 sched-watcher Deployment

sched_watcher runs as a daemon process on a machine that has network access to both the batch system controller,
e.g. slurmctld, and to the ClusterWare head node. While one could run sched_watcher directly on a head node, it
is a better practice to run it on a ClusterWare management node to fully isolate any network or CPU load that it might
generate.

For the sched_watcher server, the command-line tools for the batch scheduler must be installed, and it will be helpful
to have the ClusterWare tools as well:

yum install clusterware-tools slurm-scyld-node

Copy the files from a head node:

scp -r /opt/scyld/clusterware/src/sched_watcher/* \
mywatcher:/path/to/dest

On the sched_watcher server, prepare the SystemD service:

cp sched_watcher.service /etc/systemd/system/.

Modify the sched_watcher.conf file as needed (see below).

Create an authentication token using the scyld-adminctl tool:

scyld-adminctl token --lifetime 10d --outfile /tmp/cw_bearer_token

The default config file assumes /tmp/cw_bearer_token but any filename and path could be used. It is also possible
to generate this token elsewhere and scp it to the sched-watcher server.

4.32. Workload Management 195

ICE ClusterWare Documentation, Release 12.4.0

Enable and start the service:

systemctl enable sched_watcher
systemctl start sched_watcher

4.32.1.2 Verify Data

Once the sched_watcher tool is running, it should quickly push data to the ClusterWare platform and InfluxDB. On
a ClusterWare head or management node, try:

scyld-nodectl ls -l

and verify that the _sched_state and other attributes are now populated.

Similarly, one can look in the monitoring GUI and the same data should be visible there.

ò Note

By default, the update cycle is every 30 seconds.

4.32.1.3 Config Settings

There are three main sections to the config file: one for sched_watcher (main) settings, and one for each of the output
options (currently slurm and influxdb).

For sched_watcher, the following options are supported:

• token_file_path = /tmp/cw_bearer_token

– Path to the authentication token file.

• token_duration = 1h

– Since the auth-token will have some lifespan embedded within it, sched_watcher will periodically re-
read the file assuming that it will be refreshed prior to expiration. token_duration sets the time-frame
for re-reading the file.

• polling_interval = 30

– Sets the time between sending of updates to the ClusterWare software. A longer interval can potentially
reduce the load on the system, but the data will be more out-of-date.

• sched_type = slurm

– Sets the "type" of batch scheduler to retrieve data from. At present, only slurm is supported.

• debug_level = 1

– Enables debugging output.

• input = slurm

– A comma-separated list of input modules that will be used. At present, slurm and clusterware area
supported.

• output = clusterware, influxdb

– A comma-separated list of output modules that should be used. It can include one or more of:
clusterware, influxdb, or archive. If admins do not wish to use InfluxDB/Telegraf monitoring, it
can be removed from this list.

For the ClusterWare platform, only one option is currently supported:

196 Chapter 4. Administration

ICE ClusterWare Documentation, Release 12.4.0

• base_url = http://parent-head-node/api/v1/

– Sets the base URL for the ClusterWare platform. Best practice would be to run sched_watcher on a
ClusterWare management node, so parent-head-node will be kept up-to-date and will always point at a
valid head node.

For Slurm, only one option is currently supported:

• base_path = /opt/scyld/slurm/bin

– Sets the base path to all of the Slurm command-line tools. This is where sched_watcher will look for the
sinfo and squeue tools.

For InfluxDB, the options are:

• base_url = udp://parent-head-node:8094

– Sets the base URL for the InfluxDB service. Best practice would be to not run sched_watcher on a
ClusterWare management node, so parent-head-node will be updated to point at a valid head node.

• include_sched = true

– For reduced data size, sched_watcher can enable or disable the _sched_state information.

• include_extra = true

– By default, sched_watcher will only push the _sched_state information. Setting this to true will also
push the _sched_extra (one line) summary into InfluxDB. At this time, there is no support for sending
the full JSON data into InfluxDB.

• include_cw_data = false

– Indicates if the data from the ClusterWare platform should be written to the InfluxDB endpoint. For exam-
ple, one might want to archive the ClusterWare data, but not send it to InfluxDB.

• drop_cw_fields = *

– A simple filter system to allow some ClusterWare fields to be dropped, keeping all the others. The * is a
wildcard that matches any number of any character.

• keep_cw_fields = a.*

– A simple filter system that will keep certain ClusterWare fields even if they were otherwise selected by the
drop_cw_fields filter. The * is a wildcard that matches any number of any character

For the archive file output, the options are:

• output_file = /tmp/cw_archive

– The full path to the archive file.

• rotate_interval = 1d

– How often the archive file should be rotated (can use h for hours, d for days).

• zip_prog = /usr/bin/gzip

– If given, the rotated (old) archive files will be compressed with the given tool to reduce storage requirements.

• drop_cw_fields = *

– A simple filter system to allow some ClusterWare fields to be dropped, keeping all the others. The * is a
wildcard that matches any number of any character.

• keep_cw_fields = a.*

– A simple filter system that will keep certain ClusterWare fields even if they were otherwise selected by the
drop_cw_fields filter. The * is a wildcard that matches any number of any character

4.32. Workload Management 197

ICE ClusterWare Documentation, Release 12.4.0

4.32.1.4 Notes

• The code currently runs as root so that it can read the config file in /opt/scyld/clusterware and also read the
admin-created token file

• The sched_watcher tool cannot refresh the auth-token that it's been given, so there must be some other (out-
of-band) process to refresh that bearer token before it expires.

– e.g. One could run a weekly cron job that executes the scyld-adminctl token command.

• Restart/Reload sched_watcher after any changes to the config file.

– To reload the config and auth-token files: systemctl reload sched_watcher

– To completely restart the system: systemctl restart sched_watcher

• The archived data is in a straightforward key=value format. Each line includes time=<Unix timestamp> and
host=<hostname> followed by the data fields for that node.

– The raw data is "flattened" into a single-level set of dotted keys, so clusterware.attributes.foowould
become c.a.foo=value * attributes becomes a, status: s, hardware: h

• There is simple filtering available with some outputs modules: keep_cw_fields and drop_cw_fields.

– Both can be comma-separated lists of fields that should be included or excluded, and both can include a
trailing wildcard (*)

– keep_cw_fields are retained in the output even if there is a matching drop_cw_fields key

– drop_cw_fields=* and keep_cw_fields=a.*

∗ drop all fields except for a.* fields (attributes)

– drop_cw_fields= (empty) and keep_cw_fields=*

∗ retain all fields

Example Config

[sched_watcher]
token_file_path = /tmp/cw_bearer_token
token_duration = 1h
polling_interval = 30
sched_type = slurm
debug_level = 1
available inputs = clusterware, slurm
input = slurm
available outputs = archive, clusterware, influxdb
output = clusterware

[clusterware]
base_url = http://parent-head-node/api/v1/

[slurm]
base_path = /opt/scyld/slurm/bin

[influxdb]
base_url = udp://parent-head-node:8094
include_sched = true
include_sched_extra = false
include_cw_data = false

(continues on next page)

198 Chapter 4. Administration

ICE ClusterWare Documentation, Release 12.4.0

(continued from previous page)

drop most fields ...
drop_cw_fields = *
but keep these ...
keep_cw_fields = a.*

[archive]
output_file = /tmp/cw_archive
rotate_interval = 1d
zip_prog = /usr/bin/gzip
drop_cw_fields = *
keep_cw_fields = *

4.32.2 Applications Report Excessive Interruptions and Jitter
In certain circumstances that are more common with real-time, performance sensitive multi-node applications, appli-
cations may occasionally suffer noticeable unwanted interruptions or "jitter" that affects the application's stability and
predictability.

Some issues may be remedied by having the affected compute nodes execute in "busy mode", during which the node's
cw-status-updater service severely reduces the scope of what information it periodically gathers and reports to the
node's parent. That service's normal operation may exhibit an infrequent 1-2 second computation stall, which in a
cluster with hundreds or thousands of nodes may affect a multi-node real-time application's otherwise rapid periodic
sync'ing.

"Busy mode" can be enabled in one of three ways:

• Set the node's boolean _busy reserved attribute to True with a case-insensitive 1, "on", "y", "yes", "t", or "true".
See the _busy attribute in Reserved Attributes for details. Turn off "busy mode" by setting _busy to False with 1,
"off", "n", "no", "f", or "false", or by clearing the _busy attribute completely.

• Execute touch /opt/scyld/clusterware-node/etc/busy.flag on the node in a job scheduler prologue
to enable and rm that file in an epilogue to disable. This busy.flag method is ignored if the node's _busy
attribute is explicitly set to True or False.

• The node's cw-status-updater service may heuristically decide on its own to execute in "busy mode". This method
is overridden by the presence of busy.flag or by an explicit _busy attribute setting.

An additional approach is to employ cpusets to execute specific applications on specific node cores in order to mini-
mize contention. See the _status_cpuset attribute in Reserved Attributes for details about how to do this for the cw-
status-updater service, and consult your Linux distribution or job scheduler documentation for how to do this for your
applications.

4.33 Role-Based Access Control System
As described in Role-Based Access Controls, the ICE ClusterWare™ Role-Based Access Control system has 6 primary
roles plus the "No Access" pseudo-role. A role is a set of 1 or more permissions, usually grouped according to an
employee's job-related needs. E.g. there is an Onsite Engineer role that is designed to capture all the actions a "rack-
and-cable" technician might need in their daily job. The ClusterWare platform ships with a set of default roles, but
admins can also create new roles or modify the existing ones.

4.33. Role-Based Access Control System 199

ICE ClusterWare Documentation, Release 12.4.0

4.33.1 Permissions
Every database object type has at least a Read and Write permission, and many have additional permissions specific
to that object type. As an example, the Boot Configs-Read permission which allows an admin to read the information
about any Boot Configuration in the system. There is also an Image-Write permission that allows an admin to create
or overwrite/modify any Image in the system.

Object Type Permissions
Admin AdminsRead AdminsWrite
Attributes
Groups

AttribGroupsRead
AttribGroupsReadReserv

AttribGroupsWrite
AttribGroupsWriteReserv

Boot Configs BootConfigsRead BootConfigsWrite
Certificates CertsRead CertsWrite
Distros DistrosRead DistrosWrite
Dynamic
Groups

DynGroupsRead DynGroupsWrite

Git Repos GitReposRead GitReposWrite
Head Nodes HeadsRead HeadsWrite
Hostnames HostnamesRead HostnamesWrite
Images ImagesRead ImagesWrite
Naming
Pools

NamingPoolsRead NamingPoolsWrite

Networks NetworksRead NetworksWrite
Nodes NodesRead

NodesExecCommand
NodesReadReserv
NodesWriteGroups

NodesWrite
NodesPowerControl
NodesWriteReserv

Repos ReposRead ReposWrite
State Sets StateSetsRead StateSetsWrite

Note that all Write permissions include the ability to create, modify, and delete objects of that type. All Read permis-
sions include the ability to list all objects of that type and to see their details.

• Nodes and Attribute Groups have ReadReserv and WriteReserv permissions which allow reading/writing of the
reserved attributes, including those attributes that control how the nodes boot (see Reserved Attributes).

• Nodes have an additional permission to allow execution of code and ssh access, NodesExecCommand, and an-
other one to allow power control through the BMC or IPMI, NodesPowerControl.

• Nodes also have NodesWriteGroups to allow changing which group(s) a given node is joined to (this permission
allows addition and removal of groups).

4.33.2 Roles
The default set of roles provided by the ClusterWare software are: Authenticated User, Onsite Engineer, Imaging
Engineer, Production Engineer, Manager, and Full Admin. The "No Access" pseudo-role can be used to quickly and
easily block access to a user. See Role-Based Access Controls for a description of each role.

ò Note

The No Access role supercedes all other roles and will block even Full Admins from performing any action.

200 Chapter 4. Administration

ICE ClusterWare Documentation, Release 12.4.0

Role Permission Set
Au-
thUser

all Read permissions for all Object types

Ful-
lAd-
min

all Read and Write permissions for all Object types;
all special permissions for all Object types

NoAc-
cess

all permissions are revoked; account is blocked

Imag-
in-
gEngi-
neer

all Read permissions for all Object types, plus:
ImagesWrite, NodesReadReserv, AttribGroupsReadReserv

Man-
ager

all Read permissions for all Object types, plus:
AdminsWrite, NodesReadReserv, AttribGroupsReadReserv

Onsi-
teEngi-
neer

all Read permissions for all Object types, plus:
NodesPowerControl, NodesWrite

Pro-
ductio-
nEngi-
neer

all Read permissions for all Object types, plus:
AttribGroupsReadReserv, AttribGroupsWriteReserv
NodesWrite, NodesWriteGroups, NodesWriteReserv,
NodesPowerControl, AttribGroupsWrite, ImagesWrite
NamingPoolsWrite, BootConfigsWrite, GitReposWrite,
NodesPowerControl

4.33.3 Modifying the Role-Permissions Mapping
The role-to-permissions mapping is stored in a configuration file on the head nodes --
/opt/scyld/clusterware/src/cw_common/files/roles.ini. This is a standard INI file format with only one section
named "Roles". Within that section, admins can define one or more role using lines like:

role_name = permission1, permission2

Alternately, permissions can be listed one per line (without commas).

Note that all roles automatically have all Read permissions to all object types, and the Authenticated User and Full
Admin roles are always pre-defined and do not need to be manually created. An example file might include:

[Roles]
custom On-site engineer that adds exec and power-control
MyOnsiteEngineer = NodesPowerControl

NodesWrite
NodesExecCommand
NetworksWrite

Once the roles.ini file has been modified, it must be copied to every head node in the cluster and must overwrite the
current /opt/scyld/clusterware/src/cw_common/files/roles.ini file. Once all head nodes have the new file, the cluster-
ware service must be restarted on every head node. To avoid any disruption in cluster services, admins should restart
the clusterware service on one head node at a time, waiting for it to become fully operational before issuing the restart
on the next head node.

ò Note

The ClusterWare platform may change how these configuration settings are stored in the future. The roles.ini file

4.33. Role-Based Access Control System 201

ICE ClusterWare Documentation, Release 12.4.0

may be deprecated in favor of storing the values in the main ClusterWare database.

ò Note

Admins are strongly encouraged to work with ClusterWare staff when looking to modify this file since misconfig-
uration could lead to non-functioning cluster head nodes.

4.34 Administrators Page
The Manage Administrators page lists all administrator users, their permissions, and the date and time of their last
login. Use this page to add and edit ICE ClusterWare™ administrators. The page is available via User Management
> Users + Groups in the left navigation panel.

ò Note

All users listed in the Users table can be assigned administrator roles and permissions.

Administrators granted temporary access via "auth.tmpadmins" as defined in the /opt/scyld/clusterware/conf/
base.ini file are flagged in the list. See Authentication for details about enabling temporary permissions.

202 Chapter 4. Administration

ICE ClusterWare Documentation, Release 12.4.0

4.34.1 Add Administrator

ò Note

If you configured the ClusterWare platform with Keycloak, users must be added in both the Keycloak and Cluster-
Ware softwares. See Integrating Keycloak with ICE ClusterWare for RBAC for details.

To create an administrator:

1. Click Add Administrator. The Add Administrator pane opens.

2. Add details about the administrator. Name and RBAC Roles are required fields. Default roles and descriptions
are available at the top of the page by expanding the Role descriptions section. See Roles for a list of permissions
granted by each default role.

3. Click Add Administrator to save your changes. The new administrator is added to the list.

4.34.2 Edit Administrator

ò Note

If you configured the ClusterWare platform with Keycloak, modifying roles must be done in both the Keycloak and
ClusterWare softwares. See Integrating Keycloak with ICE ClusterWare for RBAC for details.

To edit an administrator:

1. Click the ellipsis (...) on the far right of the row and select the Edit action. The Edit Administrator pane appears
and populates with the administrator's details.

2. Make updates to the administrator.

3. Click Edit Administrator to save your changes.

4.34.3 Delete Administrator
To delete an administrator, click the ellipsis (...) on the far right of the row and select the Delete action.

4.34.4 Related Links
• Role-Based Access Controls

• Role-Based Access Control System

• Configure Additional Cluster Administrators

• scyld-adminctl

4.35 Configure Additional Cluster Administrators
The ICE ClusterWare™ administrator's command-line tools are found in the clusterware-tools package, which is in-
stalled by default on the head node by scyld-install. It can be additionally installed on any system that has HTTP
(or HTTPS, see Securing the Cluster) access to a ClusterWare head node in the cluster.

To install these tools on a machine other than the head node, login to that other system, copy /etc/yum.repos.d/
clusterware.repo from a head node to the same location on this system, then execute:

4.35. Configure Additional Cluster Administrators 203

ICE ClusterWare Documentation, Release 12.4.0

sudo yum install clusterware-tools

Once the tools are installed, each administrator must configure a connection to the ClusterWare service, which is con-
trolled by variables in the user's ~/.scyldcw/settings.ini file. The scyld-tool-config tool script is provided
by the clusterware-tools package. The contents of the settings.ini file are discussed in the ICE ClusterWare Com-
mand Line Tools. Running that tool and answering the on-screen questions will generate a settings.ini file, although
administrators of more advanced cluster configurations may need to manually add or edit additional variables.

Once the settings.ini is created, you can test your connection by running a simple node query:

scyld-nodectl ls

This query may complain at this time that no nodes exist or no nodes are selected, although such a complaint does
verify that the requesting node can properly communicate with a head node database. However, if you see an error
resembling the one below, check your settings.ini contents and your network configuration:

Failed to connect to the ClusterWare service. Please check that the
service is running and your base_url is set correctly in
/home/adminuser/.scyldcw/settings.ini or on the command line.

The connection URL and username can also be overridden for an individual program execution using the --base-url
and --user options available for all scyld-* commands. The settings.ini file generated by scyld-install will
contain a blank client.authpass variable. This is provided for convenience during installation, though for production
clusters the system administrator will want to enforce authentication restrictions. See details in Securing the Cluster.

4.35.1 scyld-adminctl
NAME
scyld-adminctl -- Query and modify administrators for the cluster.

USAGE
scyld-adminctl

[-h] [-v] [-q] [[-c | --config] CONFIG] [--base-url URL] [[-u | --user] USER[:PASSWD]]
[--human | --json | --csv | --table] [--pretty | --no-pretty] [--fields FIELDS]
[--show-uids] [[-i | --ids] ADMINS | -a | --all] {list,ls, create,mk, clone,cp,
update,up, replace,re, delete,rm, token}

DESCRIPTION
This tool does not control the details of authentication. For that, please consult Securing the Cluster in the documen-
tation.

OPTIONAL ARGUMENTS
-h, --help Print usage message and exit. Ignore trailing args, parse and ignore preceding

args.

-v, --verbose Increase verbosity.

-q, --quiet Decrease verbosity.

-c, --config CONFIG Specify a client configuration file CONFIG.

--show-uids Do not try to make the output more human readable.

-a, --all Interact with all administrators (default for list).

-i, --ids ADMINS A comma-separated list of administrators to query or modify.

204 Chapter 4. Administration

ICE ClusterWare Documentation, Release 12.4.0

ARGUMENTS TO OVERRIDE BASIC CONFIGURATION DETAILS
--base-url URL Specify the base URL of the ClusterWare REST API.

-u, --user USER[:PASSWD]
Masquerade as user USER with optional colon-separated password PASSWD.

FORMATTING ARGUMENTS
--human Format the output for readability (default).

--json Format the output as JSON.

--csv Format the output as CSV.

--table Format the output as a table.

--pretty Indent JSON or XML output, and substitute human readable output for other for-
mats.

--no-pretty Opposite of --pretty.

--fields FIELDS Select individual fields in the result or error.

ACTIONS ON SPECIFIED ADMINISTRATOR(S)
list (ls)

List information about administrator(s).

create (mk) name=NAME
Add an administrator NAME.

clone (cp) name=NAME
Copy administrator to new identifier NAME.

update (up)
Modify administrator fields.

replace (re)
Replace all administrator fields. Deprecated in favor of "update".

delete (rm)
Delete administrators(s).

token
Create a new bearer token with selected properties.

EXAMPLES
scyld-adminctl create name=hsolo

Add new administrator "hsolo".

scyld-adminctl -i hsolo clone name=cbaca

Copy the administrator properties for "hsolo" to a new administrator "cbaca".

RETURN VALUES
Upon successful completion, scyld-adminctl returns 0. On failure, an error message is printed to stderr and scyld-
adminctl returns 1.

4.35. Configure Additional Cluster Administrators 205

ICE ClusterWare Documentation, Release 12.4.0

4.36 User Impersonation
ICE ClusterWare™ users with the AdminWrite permission can impersonate another user, which allows them to com-
plete actions like creating a ticket that appears to originate from another user. See Role-Based Access Control System
for details about default roles and permissions.

Run the following command to generate a token for the user you want to impersonate:

scyld-adminctl -i <otheruser> token

Where <otheruser> is replaced by the user ID of the user you want to impersonate.

For example, if user admin1 runs the following command, a token will be generated for user user1:

scyld-adminctl -i user1 token

ò Note

To use this feature with Keycloak, you first need to enable fine-grained permissions and the "impersonate" feature.
Contact Penguin Computing for assistance.

4.37 Integrating Keycloak with ICE ClusterWare for RBAC

4.37.1 Installation
Keycloak is a powerful, flexible authentication and authorization system with the ability to directly store user credentials
and to link to other authentication providers. The ICE ClusterWare™ platform’s use of Keycloak does not necessarily
use all of its features, and the full configuration process for all of Keycloak is beyond the scope of this document. For
more in-depth information, admins can refer to the Keycloak website and, particularly, its documentation link:

https://www.keycloak.org/documentation

Assuming Keycloak is installed and operational, the process to integrate it with the ClusterWare platform involves
selecting or creating a realm, creating a new client within that realm, adding users to the realm, assigning or creating
roles that will map to ClusterWare roles, and finally, configuring and restarting the ClusterWare software.

Installation instructions can be found in Keycloak’s documentation. This includes how-to guides for several different
types of installations: bare metal, Docker, Podman, Kubernetes, and OpenShift.

https://www.keycloak.org/guides#getting-started https://www.keycloak.org/operator/basic-deployment

4.37.2 Select a Realm
In Keycloak, a "realm" is an administrative domain that includes users, groups, roles, and client application information.
A fresh installation of Keycloak will only have one realm, called "master", and it is highly recommended that admins
create at least one other realm to use in production. The "master" realm should not be used for daily operations. In
an enterprise organization, there may already be a suitable realm available. Since client-specific information can be
compartmentalized even within a realm, there shouldn’t be any concern about the ClusterWare platform’s use of that
realm interfering with other operations.

ò Note

When creating a new realm, the name that is given will be used as the unique identifier for the realm, and will show
up in the URL.

206 Chapter 4. Administration

https://www.keycloak.org/documentation
https://www.keycloak.org/guides#getting-started
https://www.keycloak.org/operator/basic-deployment

ICE ClusterWare Documentation, Release 12.4.0

More information can be found in Keycloak’s Server Administration documentation:

https://www.keycloak.org/docs/latest/server_admin/index.html

Configuring realms:

https://www.keycloak.org/docs/latest/server_admin/index.html#configuring-realms

4.37.3 Create a New Client
Inside the selected realm, admins should create a new client – a client is an administrative container for information
related to a specific application or use-case within this realm. In this case, the ClusterWare platform will be given
its own client-container so that it does not interfere with any other applications that may be using the same Keycloak
instance.

When creating the client, note that the "client ID" acts as the unique identifier and as a "short name" for the client - it
will be displayed on many of the Keycloak webpages and it will show up in the URL.

Specific settings to be verified:

• The "Client authentication" and "Authorization" checkboxes must be enabled.

• In the "Authentication flow" section, the "Standard flow" and "Direct access grants" checkboxes must be enabled.

• The "Use refresh tokens" checkbox should be enabled (in the web-UI, this is under the "Advanced" tab).

Take note of the following information as it will be needed later during the ClusterWare configuration process:

• The server connection information, including the server address or name and any port information

• The realm name and client-ID

• The "client secret" – in the web-UI, this can be found in the Credentials tab; the "Client Authenticator" should
be "Client Id and Secret", and under it should be "Client Secret"

More information can be found in Keycloak’s Server Administration documentation:

https://www.keycloak.org/docs/latest/server_admin/index.html https://www.keycloak.org/docs/latest/server_admin/
index.html#_oidc_clients

4.37.4 Add Users
After setting up these basic "containers" for interacting with the ClusterWare platform, the next step is to create any
users that will need ClusterWare admin roles. For enterprise organizations, these accounts may already be created and
can be re-used for ClusterWare roles.

The user creation process is straightforward – each user needs a unique username (unique within the realm), and
can optionally be given first/last names and an email address. If desired, users can be configured to be required to
change their password at first login, or required to verify their email address, etc. If Keycloak was configured for other
organizational uses, it may require additional or different user information, e.g. a physical address or an employee ID
number.

It may be worth considering Keycloak’s "Groups" feature to categorize and organize users to simplify user-to-role
mapping. E.g. a group could be defined for HPC-Admins and that group can then be granted a role of hpc.fulladmin;
any user added to that group will thus become a Full Admin. This can greatly simplify the process of adding roles to
large numbers of users.

More details can be found in Keycloak’s Server Administration documentation:

https://www.keycloak.org/docs/latest/server_admin/index.html

User management:

4.37. Integrating Keycloak with ICE ClusterWare for RBAC 207

https://www.keycloak.org/docs/latest/server_admin/index.html
https://www.keycloak.org/docs/latest/server_admin/index.html#configuring-realms
https://www.keycloak.org/docs/latest/server_admin/index.html
https://www.keycloak.org/docs/latest/server_admin/index.html#_oidc_clients
https://www.keycloak.org/docs/latest/server_admin/index.html#_oidc_clients
https://www.keycloak.org/docs/latest/server_admin/index.html

ICE ClusterWare Documentation, Release 12.4.0

https://www.keycloak.org/docs/latest/server_admin/index.html#assembly-managing-users_server_administration_
guide

4.37.5 Select or Create Roles
For a given user, the ClusterWare platform will look at the Keycloak-provided list of roles to determine what that user
is or is not allowed to do. The configuration process (see below) will need to map each of the ClusterWare roles to a
Keycloak-provided role. For enterprise organizations, there may be existing roles that can be re-used for ClusterWare
roles, but otherwise, admins will have to create any needed roles.

The ClusterWare roles are:

• On-site Engineer

• Imaging Engineer

• Production Engineer

• Manager

• Full Admin

• Authenticated User (this role is also granted to anyone in any of the other roles)

Once the roles are defined, users can then be assigned to those roles either directly or through a group.

ò Note

Admins may choose to not provide a mapping for a given ClusterWare role. In that case, then that role will simply
be ignored. For example, if there is no mapping for the Manager role, then no one will ever be able to be assigned
that role.

More information can be found in Keycloak’s Server Administration documentation:

https://www.keycloak.org/docs/latest/server_admin/index.html

Roles and Groups:

https://www.keycloak.org/docs/latest/server_admin/index.html#assigning-permissions-using-roles-and-groups

4.37.6 Configuring ClusterWare Software
With the Keycloak configuration from above, admins can now configure the ClusterWare software to match. In partic-
ular, the ClusterWare software needs to know the basic configuration and the role-mapping details.

The Keycloak configuration info is stored in the ClusterWare database with the authctl tool, found at /opt/scyld/
clusterware/bin/authctl. When using authctl, replace the values with info from the actual Keycloak instance
as noted above:

authctl set keycloak base_url https://192.168.122.33:8080
authctl set keycloak client clusterware
authctl set keycloak realm penguin
authctl set keycloak secret abc123def456ghi789

Next, the role-mapping needs to be configured. The mapping is given as a comma-separated list of
keycloak_role=clusterware_role settings. For example:

authctl set keycloak role_mapping "kc_fulladmin=role.fulladmin,kc_manager=role.manager"

Note that the authctl tool can also be used to double-check the data in the ClusterWare database:

208 Chapter 4. Administration

https://www.keycloak.org/docs/latest/server_admin/index.html#assembly-managing-users_server_administration_guide
https://www.keycloak.org/docs/latest/server_admin/index.html#assembly-managing-users_server_administration_guide
https://www.keycloak.org/docs/latest/server_admin/index.html
https://www.keycloak.org/docs/latest/server_admin/index.html#assigning-permissions-using-roles-and-groups

ICE ClusterWare Documentation, Release 12.4.0

authctl show

Finally, the main ClusterWare configuration needs to be modified to swap out the standard authentication system (the
appauth module) with the Keycloak module. Edit /opt/scyld/clusterware/conf/base.ini and look for the
plugins.auth section:

plugins.auth = appauth

Change this to:

plugins.auth = keycloakauth

Note that it may be helpful to add a user or two to the auth.tmpadmins list in base.ini as well. If anything goes
wrong with the Keycloak integration process, most users will not be able to authenticate – only the tmpadmins will be
allowed into the system, and they will have full admin privileges.

When those file modifications are complete, save the file and restart the ClusterWare service:

systemctl restart clusterware

s Important

For multi-head clusters, the base.ini file should be modified on all heads, then the service on each head node should
be restarted.

4.37.6.1 Production Operations

Once the steps in the Installation process are completed and the ClusterWare service is restarted, the cluster should now
be looking to Keycloak for authentication credentials and roles. For production operations, there are several important
changes to how admins interact with the system.

4.37.7 User Management
Adding new users and modifying roles must now be done in both the Keycloak and ClusterWare systems. The instruc-
tions for adding a new user to Keycloak are shown in the "Add Users" and "Select or Create Roles" sections above.
Separately, the user must be added to the ClusterWare platform through the scyld-adminctl command:

scyld-adminctl create name=username

ò Note

When using Keycloak, no roles should be assigned in the ClusterWare platform – all roles must be assigned through
Keycloak.

To allow admins to create new tokens using scyld-adminctl token, several features must be enabled when starting
Keycloak: token-exchange and admin-fine-grained-authz. Note that these features are marked by the Keycloak team as
"Preview" features and may not be suitable for production environments. The features may be set inside the config file
or on the command line.

4.37. Integrating Keycloak with ICE ClusterWare for RBAC 209

ICE ClusterWare Documentation, Release 12.4.0

4.37.8 Logging and Auditing
Keycloak includes configurable logging and auditing settings that admins can use to directly track user behavior on the
cluster, or alternatively, to feed into another system for intrusion detection or log analysis.

By default, the log file will be keycloak.log and will be found in the root directory where keycloak was installed, i.e.
the <kc-install-root>/data/log directory. It should include all log messages except DEBUG level messages (so
INFO, WARNING, ERROR, etc. should all be logged). The file follows standard Unix/Linux syslog formatting and
should be easily interpretable by other tools. The documentation links below include examples of forwarding the data
to Graylog and ELK log aggregation systems.

There are several sections of the Keycloak documentation that may be of interest:

• https://www.keycloak.org/server/logging

• https://www.keycloak.org/docs/latest/server_admin/index.html#configuring-auditing-to-track-events

4.37.9 Access Token Lifespan
When an admin logs in to a ClusterWare cluster, the ClusterWare server will pass the information to Keycloak, which
will verify the credentials and return a set of tokens (JWT, Java Web Tokens). Those tokens will be cached in each
admin’s .scyldcw directory, in the auth_token.hdr file. That file will include the current "access token" that can be
used to perform actions in the ClusterWare system, as well as a "refresh token" that can be used to refresh the access
token if or when it expires. If the refresh token does expire, the user will be prompted for their password, which will
grant them a new set of tokens. The ClusterWare tools will automatically use the tokens in a way that should reduce
the number of times the admin has to enter their password.

Current best practice is to limit the access token to a lifetime of approximately 5-10 minutes while allowing the refresh
token to have a longer duration, such as 30-60 minutes. If a credential is stolen (or the file copied), then the Keycloak
admins can potentially invalidate the refresh token and limit exposure to the compromised tokens. Token expiration
settings for both access and refresh tokens will now be managed in Keycloak, so admins may re-configure those settings
to reduce the frequency that passwords need to be re-entered.

4.38 Integrating FreeIPA with ICE ClusterWare

4.38.1 Installation
FreeIPA is a powerful, open-source identity management system that can export an LDAP directory of user credentials
which can then be ingested into Keycloak and other authentication systems. The ICE ClusterWare™ platform's use of
FreeIPA does not necessarily use all of its features, and the full configuration process for all of FreeIPA is beyond the
scope of this document. For more in-depth information, admins can refer to the FreeIPA website and, particularly, its
documentation link:

https://www.freeipa.org/page/Documentation.html

Assuming FreeIPA is installed and operational, the process to integrate it with Keycloak involves creating a new "User
Federation" connection, including an optional "User LDAP Filter" to reduce the user accounts to only those in a certain
group. Once configured, any users that match the filter will be available inside Keycloak and can then be assigned roles
and added to the ClusterWare software.

Installation instructions can be found in FreeIPA's documentation. FreeIPA provides RPM and DEB packages, as well
as container deployment options.

https://www.freeipa.org/page/Quick_Start_Guide https://www.freeipa.org/Downloads.html

210 Chapter 4. Administration

https://www.keycloak.org/server/logging
https://www.keycloak.org/docs/latest/server_admin/index.html#configuring-auditing-to-track-events
https://www.freeipa.org/page/Documentation.html
https://www.freeipa.org/page/Quick_Start_Guide
https://www.freeipa.org/Downloads.html

ICE ClusterWare Documentation, Release 12.4.0

4.38.2 Identify a Group for ClusterWare Users
In a larger enterprise, it may make sense to select or create a group that will be used to identify users who have
administrative access to the ClusterWare system. This can help reduce the number of accounts that are being sync'ed
between Keycloak and FreeIPA. If a group already exists for those users, the full DN for the group should be noted.
Otherwise, a new group should be created and any ClusterWare admins should be added to that group.

By default, FreeIPA places user groups in a DN of the form:

cn=keycloak-allowed,cn=groups,cn=accounts,dc=<companyname>,dc=<com>

The DC components at the end will be dependent on the domain name as it is configured inside FreeIPA.

4.38.3 Identify an Admin Account for Keycloak
Keycloak will need to authenticate in order to access FreeIPA, so it will need an admin-level account to do so. If an
account already exists, the full DN for the account should be noted. Otherwise, a new account should be created.

By default, FreeIPA places users in a DN of the form:

uid=<kcadmin>,cn=users,cn=accounts,dc=<companyname>,dc=<com>

Again, the DC components will reflect the domain name, and the kcadmin component will be the username.

4.38.4 Configure Keycloak
In Keycloak, switch to the realm that is being used by the ClusterWare system and look for the "User federation" tab in
the left menu. When creating a new User-federation connection, select the "LDAP" option.

Several settings need to be configured:

• For the "Vendor", select "Red Hat Directory Services"

• Connection URL will be the URL to get to the FreeIPA server. Note that this should start with a prefix of ldap://
or ldaps://.

– Use the "Test connection" button to verify that Keycloak can reach FreeIPA over the network. If any prob-
lems show up, it may indicate firewall or other network issues.

• Bind type is "simple", and use the DN for the admin user selected or created above. E.g. uid=<kcadmin>,
cn=users,cn=accounts,dc=<companyname>,dc=<com>. Enter the admin password into the "Bind creden-
tial" text box.

– Use the "Test authentication" button to verify that the username and password are working correctly, and
that FreeIPA is responding properly to Keycloak's requests.

• Edit mode should be "READ_ONLY"

• For the default FreeIPA settings, the Users DN field should be cn=users,cn=accounts,dc=<companyname>,
dc=<com>.

• Username LDAP attribute and RDN LDAP attribute should both be set to uid.

• UUID LDAP attribute should be uidNumber.

• Although optional, admins are encouraged to set a User LDAP filter to reduce the number of user accounts that
are downloaded and sync'ed from FreeIPA to Keycloak.

– For a newly created group in a default FreeIPA system, a suitable filter might be:
(memberOf=cn=<keycloak-allowed>,cn=groups,cn=accounts,dc=<companyname>,dc=<com>)
where keycloak-group is the name of the group that contains all ClusterWare admins.

4.38. Integrating FreeIPA with ICE ClusterWare 211

ICE ClusterWare Documentation, Release 12.4.0

LDAP offers a power filtering syntax that can allow for one or more user-groups, or even selecting users by one or more
roles. See https://ldap.com/ldap-filters/ for more information.

For all other settings, the defaults should work. Larger enterprises may want to think through the Periodic full sync
and Periodic changed users sync settings to limit the load on the FreeIPA servers; note that those settings are defined
in number of seconds between synchronization events.

Note that one must click the "Save" button at the bottom of the webpage or else any changes will be lost!

4.38.5 Verifying the Integration
Once the User federation connection is created, the connection can be verified by going to the Users page in the Keycloak
web-UI. Since there is a federation defined, the Users webpage will only present a search box, not a list of known users.
To see all users, simply search for *. Depending on the number of accounts that need to be downloaded or sync'ed, it
may take a few seconds before results are rendered.

Once the page updates, all available users should be shown -- all users defined inside Keycloak as well as those defined
in FreeIPA.

ò Note

Keycloak and FreeIPA accounts can co-exist, so it may be useful to create a few Keycloak-only users just in case
the FreeIPA connection goes down.

In addition to the "Test" buttons in the Keycloak web-UI, one can always go directly to the Keycloak and FreeIPA
web-UIs to do some "debugging".

• The FreeIPA login page should be at https://<freeipa-base-url/ipa/ui/ (be sure to logout from any
current sessions). This can be useful in verifying that a given username and password work at all. If FreeIPA
does not allow the account, then Keycloak will never see it and the problem is likely inside FreeIPA.

• The Keycloak login page for a realm should be at: https://<keycloak-base-url>:8080/realms/
<realm-name>/account/ (be sure to logout from any current sessions). If Keycloak does not allow the account,
then it could be a problem inside Keycloak.

ò Note

When using Keycloak and FreeIPA, no roles should be assigned in the ClusterWare software – all roles must be
assigned through Keycloak.

4.39 Heads Page
The Heads page is available via the left navigation panel under Cluster > Head Nodes. You can also access the Heads
page for a specific head node via the Overview page's ClusterWare Disk Usage panel. The panel has a pulldown
menu on the upper right where you can select a cluster head node to display.

212 Chapter 4. Administration

https://ldap.com/ldap-filters/

ICE ClusterWare Documentation, Release 12.4.0

In example above, there are three headnodes. The selected head node displays details for the selected head node's ICE
ClusterWare™ disk usages for each of the various types of ClusterWare entities: ISOs, images, boot configurations,
Git repositories, "other", influxdb data, and the etcd database.

ò Note

These are just the proportional disk usages for ClusterWare entities, not for the node as a whole.

In the ClusterWare Disk Usage panel, click the Manage Head Nodes link in the lower right to open the Heads page,
which displays details about every cluster head node.

4.39. Heads Page 213

ICE ClusterWare Documentation, Release 12.4.0

The Heads page provides a view of basic head node status and allows users to copy information about the ClusterWare
version or the public key that the head node uses to connect to compute nodes. The version string is useful when
reporting an issue to Penguin Computing support.

Although each head node's pie chart is likely to display small differences in the sizes of the pie components, you can
hover the cursor over specific components to see their absolute sizes and note that the shared objects (ISOs, Images,
Boot Configs) show the identical sizes across the head nodes.

The "Other" category consists of files in the ClusterWare storage directory that are not recognized by the system. These
are usually files left behind during partial uploads, interrupted image cloning, or other failure cases. If the cluster is
working as expected though there is space consumed by this "Other" category, those files can be removed via the "Clean
storage/" option in the More (...) menu at the top of each head node panel. This action is equivalent to executing the
following command:

scyld-clusterctl heads -i <HEADNODE> clean --files

214 Chapter 4. Administration

ICE ClusterWare Documentation, Release 12.4.0

4.40 Important Files on Head Nodes

4.40.1 The ~/.scyldcw/ Folder
As described elsewhere in this document, ICE ClusterWare™ administrator tools read some configuration details from
the user's ~/.scyldcw/settings.ini file. This section describes the other common contents of the ~/.scyldcw/
folder. Although this is included in the Important Files on Head Nodes documentation, please note that this folder
exists in the home directory of any user who executes the ClusterWare tools, and that these tools are intended to be
installed not just on the head node, but also wherever an administrator finds convenient and has appropriate HTTP or
HTTPS access to the head node.

4.40.1.1 auth_tkt.cookie

Whenever a user authenticates to the REST API running on a head node, an authentication cookie is generated and used
for subsequent requests in the same session. Even though sessions typically end when the executed tool completes, the
command line tools caches the authentication cookie in the ~/.scyldcw/auth_tkt.cookie file to allow for faster
tool start times. A summary of the network requests are logged at the DEBUG level:

[sysadmin@virthead ~]$ scyld-nodectl -vv ls
DEBUG: GETing /node/{uid} through /mux
INFO: No value provided for global option 'client.auth_tkt'.
DEBUG: Starting new HTTP connection (1): localhost:80
DEBUG: http://localhost:80 "GET /api/v1/whoami HTTP/1.1" 200 74
DEBUG: Starting new HTTP connection (1): localhost:80
DEBUG: http://localhost:80 "GET /api/v1/whoami HTTP/1.1" 200 109
INFO: Loaded authentication cookie from previous run.
DEBUG: http://localhost:80 "POST /api/v1/mux?log=GET-/node/UID HTTP/1.1" 200 7995
DEBUG: 0.0946: transaction prepared in 0.017, completed in 0.033
INFO: Expanded '*' into 2 nodes.
Nodes
n0
n1

DEBUG: Saved authentication cookie instead of logging out.
DEBUG: 0.0959: exiting, waited for 0.033 seconds

As can be seen in the above log, the authentication token from a previous run was loaded and used for the duration of
command execution and then re-cached for later use.

4.40.1.2 logs/

The command line tools also log their arguments and some execution progress in the ~/.scyldcw/logs/ folder. By
default each tool keeps logs of its previous five runs, though this number can be adjusted in the settings.ini file by
resetting the logging.max_user_logs value. Set this value to zero to discard all logs, and set to a negative number
to preserve logs indefinitely. Administrators may be asked to provide these logs (usually via the scyld-sysinfo tool)
when requesting assistance from Penguin Computing technical support.

4.40.1.3 workspace/

The ~/.scyldcw/workspace/ folder is used by the scyld-modimg tool to store, unpack, and manipulate image
contents. Root file system images are large, which means this local image cache can grow large. Administrators are
encouraged to delete unneeded entries in the cache using the scyld-modimg --delete command, either with the -i
(or --image) argument to name specific images, or with --all to delete all local images. This will not delete the
remote copies of images stored on the head nodes, just delete the local cache. Within this folder, the manifest.json
file contains JSON formatted information about the cached images, while the images themselves are stored as individual

4.40. Important Files on Head Nodes 215

ICE ClusterWare Documentation, Release 12.4.0

packed files with names based upon their UID. If the cached images are ever out of sync with the manifest, i.e. a file is
missing or an extra file is present, then the scyld-modimg tool will print a warning:

WARNING: Local cache contains inconsistencies. Use --clean-local
to delete temporary files, untracked files, and remove missing
files from the local manifest.

This warning can be automatically cleared by running the tool with the --clean-local option. This is not done
automatically in case some useful image or other data might be lost. Alternatively, if the manifest.json is somehow
lost, a new file can be constructed for a collection of images using the --register-all option. See the command
documentation for more details.

The location of the workspace folder can be controlled on the scyld-modimg command line or by the mod-
img.workspace variable in the settings.ini file.

4.40.1.4 parse_failures/

Several ClusterWare tools execute underlying Linux commands, such as rpm or yum, and parse their output to check for
details of success or failure. During execution and parsing, the stdout and stderr of the Linux commands are cached in
the ~/.scyldcw/parse_failures/ folder. If the parsing completes, regardless of the command success or failure,
these files will be deleted, but when a tool crashes or parsing fails, these files will be left behind. Though not generally
useful to an administrator during normal operation, these output files could be useful for debugging problems and may
be requested by Penguin Computing technical support. Much like files in the ~/.scyldcw/logs/ folder, these parse
failures can be periodically purged if no problems are encountered, though be aware that useful debugging information
may be lost.

4.40.2 The /opt/scyld/clusterware/ Folder
The /opt/scyld/clusterware folder exists only on a head node and contains the core ClusterWare installation.
Selected contents are described below.

4.40.2.1 /opt/scyld/clusterware/bin/

Tools located in the bin/ folder are intended to be run as root only on head nodes and are rarely executed directly.
This is where the managedb tool is located, as well as the pam_authenticator application (described in Configure
Administrator Authentication and Authentication) and the randomize_ini script executed during initial installation.

4.40.2.2 /opt/scyld/clusterware/conf/

The conf/ folder contains the principal configuration files for ClusterWare REST API. In that folder the httpd_*.conf
files are used in the actual Apache configuration, while the INI files control the behavior of the Python Pyramid-based
service. Modifications to any of these files requires the administrator to restart the clusterware service. Also note
that modifications to these files only affect the one head node and may need to be replicated to other head nodes in
multihead configurations. Because of this, future releases may move selected variables from the base.ini file into
the ClusterWare database to provide a cluster-wide effect.

Many aspects of the REST service can be tweaked through changes to variables in the base.ini, and these are dis-
cussed throughout this documentation. To list all available variables please use the managedb tool:

sudo /opt/scyld/clusterware/bin/managedb --print-options

This command will list all options registered with the configuration system, and although many of these options are for
internal use only, Penguin Computing technical support may suggest changes in individual cases. The specific variables
available and their effects may change in future releases.

The variable names take a general form of SUBSYSTEM.VARIABLE or PLUGIN.VARIABLE. For example, the plugins
subsystem is controlled through these variables, and a specific authentication plugin is selected by the plugins.auth

216 Chapter 4. Administration

ICE ClusterWare Documentation, Release 12.4.0

variable. Further, what application the appauth plugin uses is controlled by the appauth.app_path variable. For
a description of this specific plugin, see Securing the Cluster. Other variables in the base.ini file follow similar
patterns.

Variables in the production.ini file are used to control aspects of the Python Pyramid framework, specifically
logging. Variables in this file are also for internal use and should not be modified except by the suggestion of Penguin
Computing technical support.

4.40.2.3 /opt/scyld/env/, modules/, and src/

The env/, modules/, and src/ folders contain the Python virtual environment, including the libraries required by the
scyld-* and other tools.

4.40.2.4 /opt/scyld/clusterware/parse_failures/

Similar to the individual administrator ~/scyldcw/parse_failures/, files in this folder will accumulate any parsing
failures found while running underlying Linux commands and should generally be empty. If files are accumulating here,
it is safe to delete them, but the ClusterWare developers should be informed and may request a sample of the files to
diagnose the underlying failure.

4.40.2.5 /opt/scyld/clusterware/storage/

The storage/ folder is the default location used by the local_files plugin to store kernels, initramfs files, and
packed root file systems. The actual location of this folder is controlled by the local_files.path variable in the base.
ini configuration file.

This folder can grow relatively large depending on the size and quantity of root file systems in the cluster. Most orga-
nizations will want to include the storage folder in their backup planning along with the database contents obtained
through scyld-install --save or the managedb save command. See Backup and Restore for additional discus-
sion of backup up the database contents.

4.40.2.6 /opt/scyld/clusterware/workspace/

The REST service running on each head node requires a location to hold temporary files. This location is controlled by
the head.workspace variable and defaults to /opt/scyld/clusterware/workspace/. Like the storage/ directory,
workspace/ can grow to relatively large size, but unlike storage/ does not need to be backed up. Any files or
directories found in this folder are temporary and should be deleted when the service is shut down or restarted. If files
or folders accumulate in this folder, they are safe to remove, although this must be done carefully or when the REST
service is stopped. If files do accumulate here, please notify Penguin Computing developers so that we may diagnose
the underlying issue.

4.41 Managing Multiple Head Nodes
The ICE ClusterWare™ platform supports optional active-active(-active....) configurations of multiple cooperating
head nodes that share a single replicated database. Such multi-headnode configurations allow any head node to provide
services for any compute node in the cluster. These services include cluster configuration using scyld-* tools, compute
node booting and power control, and compute node status collection.

The ClusterWare etcd database requires a minimum of three cooperating head nodes to support full High Availability
("HA") in the event of head node failures. The etcd HA works in a limited manner with just two head nodes. The
ClusterWare command-line tools for head node management are intended to cover the majority of common cases.

4.41. Managing Multiple Head Nodes 217

ICE ClusterWare Documentation, Release 12.4.0

4.41.1 Adding a Head Node
After installing the first head node as described in Install ICE ClusterWare, additional head nodes can be installed and
joined with the other cooperating head nodes using the same scyld-install tool or using curl.

On an existing head node view its database password:

sudo grep database.admin_pass /opt/scyld/clusterware/conf/base.ini

4.41.1.1 Join a non-ClusterWare server

A non-ClusterWare server can use scyld-install to join another head node (identified by its IP address
IP_HEAD) that may itself already be joined to other head nodes. You can download scyld-install
from the Penguin repo https://updates.penguincomputing.com/clusterware/12/installer/scyld-install or https://
updates.penguincomputing.com/clusterware/12/installer-el8/scyld-install or https://updates.penguincomputing.com/
clusterware/12/installer-el9/scyld-install without needing a cluster ID, or if you already have a /etc/yum.
repos.d/clusterware.repo installed, then you can download the clusterware-installer package, which includes
scyld-install. Then:

scyld-install --database-passwd <DBPASS> --join <IP_HEAD>

where DBPASS is IP_HEAD's database password, as described above. If no --database-passwd is provided as an
argument, then scyld-install queries the administrator interactively for IP_HEAD's database password.

scyld-install doing a join will install the ClusterWare platform using the same clusterware.repo and database type
being used by the head node at IP_HEAD.

A cluster configuration file is not required when joining a server to a head node because those settings are obtained
from the existing head node's cluster database after the join successfully completes.

4.41.1.2 Join a ClusterWare head node

A "solo" ClusterWare head node can use scyld-install to join another head node (identified by its IP address
IP_HEAD) that may itself already be joined to other head nodes.

s Important

The join action discards the "solo" head node's current images and boot configs, then finishes leaving the "solo"
head node with access to just the cooperating head nodes' images and boot configs. If you want to save any images or
configs, then first use scyld-bootctl export (Exporting and Importing Boot Configurations Between Clusters)
or managedb save.

For example, to join a ClusterWare head node:

scyld-install --update --database-passwd <DBPASS> --join <IP_HEAD>

When a ClusterWare 12 head node joins another ClusterWare 12 head node, scyld-install performs a mandatory
update of the current ClusterWare software using IP_HEAD's clusterware.repo prior to joining that IP_HEAD. This
ensures that ClusterWare (and scyld-install) are executing compatible ClusterWare software.

However, the ClusterWare 11 version of scyld-install will not automatically perform this mandatory update of
11 to 12 and will just update the joining head node to the newest version of ClusterWare 11. Penguin Computing
recommends first updating the ClusterWare 11 head node to 12 (following the guidance of Updating ClusterWare 11
to ClusterWare 12), and then using the ClusterWare 12 scyld-install to perform the join.

Just as when joining a non-ClusterWare server, if no --database-passwd is provided as an argument, then
scyld-install queries the administrator interactively for IP_HEAD's database password.

218 Chapter 4. Administration

https://updates.penguincomputing.com/clusterware/12/installer/scyld-install
https://updates.penguincomputing.com/clusterware/12/installer-el8/scyld-install
https://updates.penguincomputing.com/clusterware/12/installer-el8/scyld-install
https://updates.penguincomputing.com/clusterware/12/installer-el9/scyld-install
https://updates.penguincomputing.com/clusterware/12/installer-el9/scyld-install

ICE ClusterWare Documentation, Release 12.4.0

4.41.1.3 After a Join

s Important

Every head node must know the hostname and IP address of every other head node, either by having those hostnames
in each head node's /etc/hosts or by having their common DNS server know all the hostnames. Additionally, if
using head nodes as default routes for the compute nodes, as described in Configure IP Forwarding, then ensure
that all head nodes are configured to forward IP traffic preferably over the same routes.

s Important

Every head node should use a common network time-sync protocol. The Red Hat RHEL default is chronyd (found
in the chrony package), although ntpd (found in the ntp package) continues to be available.

Subsequent head node software updates are also accomplished by executing scyld-install -u. We recommend that
all cooperating head nodes update to a common ClusterWare release. In rare circumstance a newer ClusterWare release
on the head nodes also requires a compatible newer clusterware-node package in each compute node image. Such a
rare coordinated update will be documented in the Release Notes and Changelog.

4.41.1.4 Cleaning up From Join Failures

The scyld-install --join <IP> command ensures that the database.admin_pass variable is properly set in
/opt/scyld/clusterware/conf/base.ini and logs errors into ~/.scyldcw/logs/install_<TIMESTAMP>.log. If the join fails,
check that log file for details. Please report those errors to Penguin, but there are several approaches to retrying the
join.

Before retrying the join, the cluster administrator should ensure that the existing cluster has not been negatively affected
by the failed join. Appropriate recovery depends on the initial number of head nodes in the cluster.

For a single head node:
The HA mechanisms expect at least 3 head nodes, so if joining fails while adding the second head node to the cluster,
then etcd on the initial head node may be left in a bad state. Check for this by running:

/opt/scyld/clusterware/bin/managedb --heads

If that command results in an error then the existing head node requires recovery via:

/opt/scyld/clusterware/bin/managedb recover

Once recovery has completed then managedb --heads will show a single head node and scyld-*ctl commands
will work as expected. At this point the other head nodes can be joined.

When joining to a cluster with more than one head node:
The complete join process consists of two stages. In the first stage, the joining head node reaches out to the existing
head node to retrieve the etcd peer URLs and adds itself as an etcd member. In the second stage, the joining head node
reconfigures its local etcd instance to communicate with the existing etcd instances.

If a failure happens during the first stage, existing head nodes will not be modified and the join can be retried without
additional interventions. If a failure occurs during the second stage then running managedb --heads on the existing
heads will show the joining head node and that remnant needs to be ejected before proceeding. To do that run a
command on an existing head node:

4.41. Managing Multiple Head Nodes 219

ICE ClusterWare Documentation, Release 12.4.0

/opt/scyld/clusterware/bin/managedb eject <JOINING_HEAD_IP>

After cleaning:
Once the appropriate steps are complete the cluster administrator can retry the head node join process. Possible reasons
for join failure are:

Networking issues

• If the head nodes cannot reach each other at all then we expect a failure in stage one and the join can be retried
once the issue is resolved.

• If the head nodes can reach the API but not the etcd port (default 52380), usually due to a firewall configuration,
then we expect a failure in the second stage and cleanup will be required before retrying.

Duplicate head node UIDs

• If a head node is created by cloning an existing VM and the cluster administrator does not replace the head.uid
in the base.ini, we expect a failure in the second stage and cleanup is required before fixing the problem and
retrying.

If the joining process fails multiple times and the joining head node was previously a member of this or some other
cluster, it can be useful to provide a --purge argument to the join process. This causes the joining head node to
completely remove any local database content before attempting to join the cluster:

/opt/scyld/clusterware/bin/managedb join –purge <IP>

4.41.2 Removing a Joined Head Node
A list of connected head nodes can be seen with:

sudo /opt/scyld/clusterware/bin/managedb --heads

Head nodes also store status information in the ClusterWare database. That content can be viewed via:

scyld-clusterctl heads ls -l

Sometimes a cluster administrator will need to temporarily or permanently remove a head node from the cluster during
the course of an RMA, upgrade, or other maintenance task. For a cluster with three or more head nodes you can remove
one of the head nodes by running managedb leave on that head node:

sudo /opt/scyld/clusterware/bin/managedb leave

Or if that head node is shut down or otherwise unavailable, then it can be ejected by another head node in the cluster
by running:

sudo /opt/scyld/clusterware/bin/managedb eject <IP_HEAD_TO_REMOVE>

Note that this command will attempt to stop some services on the targeted head node and that step may fail. That does
not mean that the eject has necessarily failed. The now-detached head node will no longer have access to the shared
database and will be unable to execute any scyld-* command, as those require a database. Either re-join the previous
cluster:

sudo /opt/scyld/clusterware/bin/managedb join <IP_HEAD>

or join another cluster after updating the local /opt/scyld/clusterware/conf/base.ini database.admin_pass to
the other cluster's database password and then joining to a head node in that other cluster. After joining a cluster by
directly using the managedb join command the clusterware service should be restart on the joining head node.

220 Chapter 4. Administration

ICE ClusterWare Documentation, Release 12.4.0

The node can also be wiped and reinstalled:

scyld-install --clear-all --config <CLUSTER_CONFIG>

However, for a cluster with only two head nodes you cannot managedb eject or managedb leave, and instead must
execute managedb recover, thereby "ejecting" the other head node:

sudo /opt/scyld/clusterware/bin/managedb recover

This command will reduce the head node cluster to a single head node, specifically the one where that command is
executed, severing the connection to the shared database. If this command is executed on one of three or more head
nodes the remaining head nodes will continue to operate as an independent cluster.

s Important

Keep in mind that if managedb recover is run on both head nodes then both head nodes will have their own copies
of the now-severed database that manages the same set of compute nodes, which means that both will compete for
"ownership" of the same booting compute nodes.

To avoid both head nodes competing for the same compute nodes, either execute sudo systemctl stop
clusterware on one of the head nodes, or perform one of the steps described above to re-join this head node to the
other head node that previously shared the same database, or join another head node, or perform a fresh ClusterWare
install.

4.41.2.1 Peer Downloads

Multi-head clusters replicate data between head nodes on local storage to preserve a copy of each uploaded or requested
file. The storage location is defined in /opt/scyld/clusterware/conf/base.ini by the local_files.path variable,
and it defaults to /opt/scyld/clusterware/storage/.

Whenever a ClusterWare head node is asked for a file such as a kernel, the expected file size and checksum are retrieved
from the database. If the file exists in local storage and has the correct size and checksum, then that local file will be
provided. However, if the file is missing or incorrect, then the head node attempts to retrieve the correct file from a
peer.

Note that local files whose checksums do not match will be renamed with a .old.NN extension, where NN starts at 00
and increases up to 99 with each successive bad file. This ensures that in the unlikely event that the checksum in the
database is somehow corrupted, the original file can be manually restored.

Peer downloading consists of the requesting head node retrieving the list of all head nodes from the database and
contacting each in turn in random order. The first peer that confirms that it has a file with the correct size provides that
file to the requesting head node. The checksum is computed during the transfer, and the transferred file is discarded if
that checksum is incorrect. Contacted peers will themselves not attempt to download the file from other peers in order
to avoid having a completely missing file trigger a cascade.

After a successful peer download, the original requester receives the file contents after a delay due to the peer download
process. If the file cannot be retrieved from any head node, then the original requester will receive a HTTP 404 error.

This peer download process can be bypassed by providing shared storage among head nodes. Such storage should either
be mounted at the storage directory location prior to installation, or the /opt/scyld/clusterware/conf/base.ini
should be updated with the non-default pathname immediately after installation of each head node. Remember to restart
the clusterware service after modifying the base.ini file by executing sudo systemctl restart clusterware,
and note that the systemd clusterware.service is currently an alias for the httpd.service.

When a boot configuration or image is deleted from the cluster, the deleting head node will remove the underlying
file(s) from its local storage. That head node will also temporarily move the file's database entry into a deleted files
list that other head nodes periodically check and delete matching files from their own local storage. If the clusterware

4.41. Managing Multiple Head Nodes 221

ICE ClusterWare Documentation, Release 12.4.0

service is not running on a head node when a file is marked as deleted, then that head node will not be able to delete the
local copy. When the service is later restarted, it will see its local file is now no longer referenced by the database and
will rename it with the .old.NN extension described earlier. This is done to inform the administrator that these files are
not being used and can be removed, although cautious administrators may wish to keep these renamed files until they
confirm all node images and boot configurations are working as expected.

4.41.3 Booting With Multiple Head Nodes
Since all head nodes are connected to the same private cluster network, any compute node's DHCP request will receive
offers from all the head nodes. All offers will contain the same IP address by virtue of the fact that all head nodes share
the same MAC-to-IP and node index information in the replicated database. The PXE client on the node accepts one
of the DHCP offers, which is usually the first received, and proceeds to boot with the offering head node as its "parent
head node". This parent head node provides the kernel and initramfs files during the PXE process, and provides the
root file system for the booting node, all of which should also be replicated in /opt/scyld/clusterware/storage/
(or in the alternative non-default location specified in /opt/scyld/clusterware/conf/base.ini).

On a given head node you can determine the compute nodes for which it is the parent by examining the head node
/var/log/clusterware/head_* or /var/log/clusterware/api_error_log* files for lines containing "Boot-
ing node". On a given compute node you can determine its parent by examining the node's /etc/hosts entry for
parent-head-node.

Once a node boots, it asks its parent head node for a complete list of head nodes, and then thereafter the node sends
periodic status information to its parent head node at the top of the list. If at any point that parent head node does not
respond to the compute node's status update, then the compute node chooses a new parent by rotating its list of available
head nodes by moving the unresponsive parent to the bottom of the list and moving the second node in the list up to
the top of the list as the new parent.

The administrator can force compute nodes to re-download the head node list by executing scyld-nodectl script
fetch_hosts and specifying one or more compute nodes. The administrator can also refresh the SSH keys on the
compute node using scyld-nodectl script update_keys.

Clusters of 100 nodes or more benefit from having each head node being a parent to roughly the same number of
compute nodes. Each head node periodically computes the current mean number of nodes per head, and if a head
node parents significantly more (e.g., >20%) nodes than the mean, then the head node triggers some of its nodes to use
another head node. Care is taken to avoid unnecessary shuffling of compute nodes. The use of the _preferred_head
attribute may create an imbalance that this rebalancing cannot remedy.

4.42 headctl
NAME
headctl -- Manage head node network communication settings.

USAGE
headctl

[-h | --help] [--status] [--prefer-http] [--prefer-https] [--enable-https]
[--disable-https] [--enable-xsendfile] [--disable-xsendfile]

DESCRIPTION
This is a low-level tool that directly manipulates configuration settings for head node network communication. When
controlling HTTP/HTTPS settings, it modifies /opt/scyld/clusterware/conf/base.ini and two Apache con-
figuration files in /etc/http/conf.d/: ssl.conf and clusterware.conf. When enabling XSendfile support, the
tool may install necessary RPMs as well as update variables in the base.ini.

Since the earliest boot steps cannot use encrypted communications, DHCP and PXE booting are not affected by these
settings. Communications starting with initramfs execution will use HTTP or HTTPS as instructed by this command.

222 Chapter 4. Administration

ICE ClusterWare Documentation, Release 12.4.0

The tool resides in /opt/scyld/clusterware/bin/headctl and must be executed by user root.

OPTIONAL ARGUMENTS
-h, --help Print usage message and exit. Ignore trailing args, parse and ignore preceding

args.

--status Report the configuration of the ClusterWare service.

--prefer-http Instruct compute nodes to use HTTP.

--prefer-https Instruct compute nodes to use HTTPS where possible.

--enable-https Proxy through /etc/http/conf.d/ssl.conf.

--disable-https Do not proxy through /etc/http/conf.d/ssl.conf.

--minimal-ipv6 Confirm the radvd is running on our interfaces by optionally installing radvd,
adding blocks to the radvd.conf, and restarting the service if necessary.

--enable-xsendfile Use the Apache XSendfile header when clients download files.

--disable-xsendfile Do not use the Apache XSendfile header.

EXAMPLES
RETURN VALUES
Upon successful completion, headctl returns 0. On failure, an error message is printed to stderr and headctl returns
1.

4.43 Troubleshooting Head Nodes

4.43.1 Head Node Filesystem Is 100% Full
If a head node filesystem(s) that contains ICE ClusterWare™ data (typically the root filesystem) is 100% full, then the
administrator cannot execute scyld-* commands and ClusterWare cluster operations will fail.

4.43.1.1 Verify Excessive Storage is Related to ClusterWare Software

First determine whether or not the problem is due to ClusterWare-related files. Investigate with:

sudo du -sh /opt/* ; sudo du -sh /opt/scyld/*
sudo du -sh /var/lib/*

For each cluster administrator with a home directory on local storage:
sudo du -sh /home/*/.scyldcw/workspace

and look for excessive storage consumption. If the ClusterWare software is not the problematic consumer, then broaden
the search across the filesystem(s) for non-ClusterWare storage that can be reduced.

For ClusterWare storage, continue:

4.43.1.2 Remove Unnecessary Objects from the ClusterWare Database

Remove any unnecessary objects in the database that may be lingering after an earlier aborted operation:

sudo systemctl stop clusterware
sudo rm /opt/scyld/clusterware/storage/*.old.00
sudo systemctl start clusterware

4.43. Troubleshooting Head Nodes 223

ICE ClusterWare Documentation, Release 12.4.0

If that does not release enough space to allow the scyld-* commands to execute, then delete the entire local cache of
database objects:

sudo systemctl stop clusterware
sudo rm -fr /opt/scyld/clusterware/workspace/*
sudo systemctl start clusterware

4.43.1.3 Investigate InfluxDB Retention of Telegraf Data

If you continue to see influxdb messages in /var/log/messages that complain "no space left on device", or if the size
of the /var/lib/influxdb/ directory is excessively large, then InfluxDB may be retaining too much Telegraf time
series data, aka shards. Examine with:

sudo systemctl restart influxdb

View the summation of all the Telegraf shards
sudo du -sh /var/lib/influxdb/data/telegraf/autogen/

View the space consumed by each Telegraf shard
sudo du -sh /var/lib/influxdb/data/telegraf/autogen/*

If the autogen directory or any particular autogen subdirectory shard consumes a suspiciously large amount of
storage, then examine the retention policy with the influx tool:

sudo influx

and now within the interactive tool you can can execute influx commands:

> show retention policies on telegraf

The current ClusterWare defaults are a duration of 168h0m0s (save seven shards of Telegraf data) and a shardGroup-
Duration of 24h0m0s (each spanning one 24-hour day). You can reduce the current retention policy, if that makes
sense for your cluster, with simple command. For example, reduce the above 7-shard duration to five, thereby reducing
the number of saved shards by two:

> alter retention policy "autogen" on "telegraf" duration 5d

You can also delete individual unneeded shards. View the shards and their timestamps:

> show shards

and selectively delete any unneeded shard using its id number, which is found in the show output's first column:

> drop shard <shard-id>

When finished, exit the influx tool with:

> exit

See https://docs.influxdata.com/influxdb/v1.8/ for more documentation.

224 Chapter 4. Administration

https://docs.influxdata.com/influxdb/v1.8/

ICE ClusterWare Documentation, Release 12.4.0

4.43.1.4 Remove Unnecessary Images and Repos

If scyld-* commands can now execute, then view information for all images and repos, including their sizes:

scyld-imgctl ls -l
scyld-clusterctl repos ls -l

Consider selectively deleting unneeded images with:

scyld-imgctl -i <imageName> rm

and consider selectively deleting unneeded repos with:

scyld-clusterctl repos -i <repoName> rm

4.43.1.5 Move Large Directories

If scyld-* commands still cannot execute, and if your cluster really does need all its existing images, boot configs,
telegraf history, and other non-ClusterWare filesystem data, then consider moving extraordinarily large directories (e.g.,
/opt/scyld/clusterware/workspace/, as specified in /opt/scyld/clusterware/conf/base.ini) to another
filesystem or even to another server, and/or add storage space to the appropriate filesystem(s).

4.43.2 Head Nodes Disagree About Compute Node State
If two linked head nodes disagree about the status of the compute nodes, this is usually due to clock skew between the
head nodes. The appropriate fix is to ensure that all head nodes are using the same NTP / Chrony servers. The shared
database includes the last time each compute node provided a status update. If that time is too far in the past, then a
compute node is assumed to have stopped communicating and is marked as "down". This mark is not recorded in the
database, but is instead applied as the data is returned to the calling process such as scyld-nodectl status.

4.43.2.1 Head Node Failure

To avoid issues like an Out-Of-Memory condition or similarly preventable failure, head nodes should generally not
participate in the computations executing on the compute cluster. As a head node plays an important management
role, its failure, although rare, has the potential to impact significantly more of the cluster than the failure of individual
compute nodes. One common strategy for reducing the impact of a head node failure is to employ multiple head nodes
in the cluster. See Managing Multiple Head Nodes for details.

4.43.3 etcd Database Exceeds Size Limit
The etcd database has a hard limit of 2GB. If exceeded, then all scyld-* commands fail and
/var/log/clusterware/api_error_log will commonly grow in size as each node's incoming status message cannot
be serviced. The ClusterWare api_error_log may also contain the following text:

etcdserver: mvcc: database space exceeded

Normally a head node thread executes in the background that triggers the discarding of database history (called com-
paction) and triggers database defragmentation (called defrag) if that is deemed necessary. In the rare event that this
thread stops executing, then the etcd database grows until its size limit is reached.

This problem can solved with manual intervention by an administrator. Determine if the etcd database really does
exceed its limit. For example:

[admin@head1]$ sudo du -hs /opt/scyld/clusterware-etcd/
2.1G /opt/scyld/clusterware-etcd

4.43. Troubleshooting Head Nodes 225

ICE ClusterWare Documentation, Release 12.4.0

shows a size larger than 2GB, so you can proceed with the manual intervention.

First determine the current database revision. For example:

[admin@head1]$ sudo /opt/scyld/clusterware-etcd/bin/etcdctl get --write-out=json does_
→˓not_exist
{"header":{"cluster_id":9938544529041691203,"member_id":10295069852257988966,"revision
→˓":4752785,"raft_term":7}}

Subtract two or three thousand from the revision value 4752785 and compact to that new value:

[admin@head1]$ sudo /opt/scyld/clusterware-etcd/bin/etcdctl compaction 4750000
compacted revision 4750000

and trigger a defragmentation to reclaim space:

[admin@head1]$ sudo /opt/scyld/clusterware-etcd/bin/etcdctl defrag
Finished defragmenting etcd member[http://localhost:52379]

Then clear the alarm and reload the clusterware service:

[admin@head1]$ sudo /opt/scyld/clusterware-etcd/bin/etcdctl alarm disarm
[admin@head1]$ sudo systemctl reload clusterware

This restarts the head node thread that executes in the background and checks the etcd database size. Everything should
now function normally.

4.44 Networks Page
If your cluster has multiple networks, the ICE ClusterWare™ platform initially creates a network record for only the
network that was used during installation. You can add other networks to manage DHCP/DNS entries on ClusterWare
nodes for those networks as well.

Use the Networks page to define available node IPs, what interfaces the DHCP server listens on, and parameters used
during the early compute node boot process. The page is available via Network > Networks in the left navigation
panel.

226 Chapter 4. Administration

ICE ClusterWare Documentation, Release 12.4.0

4.44.1 Create a Network
To create a network:

1. Click Add Network.

2. Add details about the network.

• Name: Required.

• Description: Optional.

• First IP: Required.

• Mask Bits: Required.

• IP Count: Required.

• First Index: Optional.

• Domain: Optional.

• Router IP: Optional.

• Gateway IP: Optional.

• Node Interface: Optional.

3. Click Add Network to save your changes.

The new network appears in the list at the top of the page.

4.44.2 Edit Network
To edit a network:

1. Click the network name to open the details panel for that network.

2. Click the edit icon (pencil) to enable changes.

3. Make updates to the network.

4. Click Update to save your changes.

4.44.3 Delete Network
To delete a network, click the ellipsis (...) on the far right of the row and select the Delete action.

4.44.4 Related Links
• scyld-clusterctl

4.45 Open Network Ports
The ICE ClusterWare™ platform needs a number of network ports to be open so that critical services can be reached.
Which ports are needed depends on the function of a given node. Head nodes serve out many of the cluster infrastructure
services, like DNS and DHCP, and hence need a number of ports open. Login or management nodes need fewer ports
open since, while admins can run ClusterWare commands on those nodes, they do not host any services themselves.
Compute nodes also do not host any services and thus need few ports to be open.

4.45. Open Network Ports 227

ICE ClusterWare Documentation, Release 12.4.0

ò Note

MPI and other communication libraries may have additional requirements on open network ports; these require-
ments will be highly application-specific, please refer to the vendor's documentation for more information.

It is often convenient to simply open up the internal cluster network to allow all traffic so that compute nodes and heads
can easily "talk" to each other. One method is to create a "rich rule" for the cluster subnet that allows all traffic:

firewall-cmd --permanent --zone=public \
--add-rich-rule='rule family=ipv4 source address=192.168.100.0/24 accept'

For clusters with multiple networks, multiple "rich rules" will need to be created.

In more secure environments, admins may want to lock down the network more tightly. The following table shows what
ports need to be open on different "types" of nodes. "Open" indicates that the port is required to be open for proper
functioning of the cluster. "Opt" indicates a port that may be open or blocked, but note that if it is blocked, then that
service may not function fully. As an example, the Chrony tool uses port 123 to keep the system's time in sync; but
port 323 is only needed if admins want to do further control of Chrony through the chronyc command-line tool.

Service Port HEAD LOGIN NODE
Apache (httpd) 801 open

443 open
Chrony 123 open

3232 opt opt opt
DHCP 68 open
DNS 53 open
etcd 52380 open
Grafana 523913 local
InfluxDB 80864 local opt
iSCSI 32605 opt
SSH 22 open open open
Telegraf 8094 open
TFTP 69 open
Slurm 33066 open

68177 open open open
68188 open open
68199 open

Footnotes
[1] Use of the insecure HTTP protocol on port 80 is deprecated;

admins should switch to HTTPS on port 443.
[2] Port 323 is used by the `chronyc` command-line tool and by

the `chrony` status plugin; if those tools are not being used,
then the port can be disabled. When used, the traffic should
only be on localhost.

[3] The Grafana port must be open for local traffic on the heads.
[4] The InfluxDB port must be open for local traffic on the heads.

On heads and login nodes, it can be opened for debugging or
low-level access to InfluxDB.

[5] iSCSI support is optional; if iSCSI booting is not being used,
then the port can be disabled.

(continues on next page)

228 Chapter 4. Administration

ICE ClusterWare Documentation, Release 12.4.0

(continued from previous page)

[6] Slurm is an optional package; port 3306 is used
by `slurmdbd` to talk to the SQL database which generally
resides on the same host.

[7] Slurm is an optional package; port 6817 is used
by various tools to communicate with `slurmctld` on the
Slurm controller node.

[8] Slurm is an optional package; port 6818 is used
by `slurmd` on the compute-nodes to receive job information
from the `slurmctld` on the Slurm controller node.

[9] Slurm is an optional package; port 6819 is used
by `slurmdbd` to talk to `slurmctld` which generally
resides on the same host.

4.46 Providing DHCP to Additional Interfaces
Some specialized cluster configurations require additional network-related ICE ClusterWare™ node attributes. For
example, when booting compute nodes that are configured to use a bonded administrative interface, it can be difficult
to predict what physical interface will successfully send DHCP requests.

In most clusters the compute node BMC addresses are statically assigned to ensure that the BMCs are always accessible
regardless of the state of other infrastructure. However, there are times when dynamically assigning reserved addresses
to the BMC interfaces is useful.

The ClusterWare platform supports dynamic assignment via the following Reserved Attributes:

• _altmacs

• _ips with a special bmc= entry

• _macs with a special bmc= entry

For example, a node has a primary MAC address of aa:bb:cc:dd:ee:f0, a primary IP address of 10.54.0.100, and the
following attributes defined:

_altmacs=aa:bb:cc:dd:ee:f1,aa:bb:cc:dd:ee:f2
_ips=bmc=10.10.10.100,ib0=10.55.10.100
_macs=bmc=11:22:33:44:55:66

The ClusterWare DHCP subsystem sees the _altmacs attribute and creates reservations of the 10.54.0.100 IP address
for MAC addresses aa:bb:cc:dd:ee:f0 (the primary MAC address), aa:bb:cc:dd:ee:f1, and aa:bb:cc:dd:ee:f2. Requests
from the physical network adapters with any of those MAC addresses receive the same 10.54.0.100 IP address. Nodes
should proceed with the boot process once any network adapter successfully receives the IP address and that network
adapter is marked as the bootnet.

Additionally, while examining the values of the _ips and _macs attributes, the system will find the bmc= sections
and create a reservation for the 10.10.10.100 IP address to the 11:22:33:44:55:66 MAC address. If the node BMC is
configured to dynamically request an address via DHCP and the BMC network is connected to the head node, then the
BMC receives that reserved IP address.

The ib0=10.55.10.100 section of the _ips attribute does not result in any DHCP reservations, but is substituted into
an existing ifcfg-ib0 file within the image at boot time. This is done by prenet boot scripts within the image provided
by the clusterware-node package. The scripts perform similar replacements in NetworkManager connection files
on newer operating systems or Netplan configuration files on Ubuntu.

4.46. Providing DHCP to Additional Interfaces 229

ICE ClusterWare Documentation, Release 12.4.0

4.47 Exceeding System Limit of Network Connections
Clusters with a large number of nodes (e.g., many hundreds or more) may observe a problem when executing a workload
that attempts to communicate concurrently with many or most of the nodes, such as scyld-nodectl --up exec or
mpirun executing a multi-threaded, multi-node application. The problem exhibits itself with an error message that
refers to being unable to allocate a TCP/IP socket or network connection, or arp_cache reporting a "neighbor table
overflow!" error.

A possible solution is to increase the number of available "neighbor" entries. These are managed by a coordinated
increase of gc_thresh1, gc_thresh2, and gc_thresh3 values. See https://www.kernel.org/doc/Documentation/
networking/ip-sysctl.txt for the semantics of these variables. See the current values with:

sysctl net.ipv4.neigh.default.gc_thresh1
sysctl net.ipv4.neigh.default.gc_thresh2
sysctl net.ipv4.neigh.default.gc_thresh3

Default CentOS/RHEL values are 128, 512, and 1024, respectively. Experiment with higher values until your workloads
are all successful. For example:

sudo sysctl -w net.ipv4.neigh.default.gc_thresh1=2048
sudo sysctl -w net.ipv4.neigh.default.gc_thresh2=4096
sudo sysctl -w net.ipv4.neigh.default.gc_thresh3=8192

See man sysctl.conf for how to make the successful values persistent across a reboot by putting them in a new
/etc/sysctl.d/ file.

4.48 Managing Zero-Touch Provisioning (ZTP)

s Important

Currently only supported for Cumulus switches.

The ICE ClusterWare™ platform supports ZTP (Zero-Touch Provisioning) of ONIE and related switches. Note that
ZTP by itself does not provide a full, end-to-end control plane for cluster networking, but it is the first step in that
direction, allowing for server-provided scripts to alter the configuration of connected switches.

Since the ZTP-capable switches are essentially Linux management systems attached to the switches, the ClusterWare
platform treats them as another node in the cluster. You can add them to the cluster using scyld-nodectl create
and specifying the switch's MAC address. For example:

scyld-nodectl create mac=aa:bb:cc:00:11:22

which simplistically creates a new (switch) node in the default naming-pool and default group. This may not be the
desirable approach, since it assigns a generic name like "n12" which is superficially indistinguishable from compute
nodes "n0" through "n11". A better approach is to utilize the ClusterWare naming-pool and attribute-group functionality
to assign a more self-identifying name and permit more efficient management of this and other ZTP-capable switches:

scyld-clusterctl pools create name=ztpswitch pattern=”switch{}”
scyld-nodectl create mac=aa:bb:cc:00:11:22 naming_pool=ztpswitch

which creates a new naming pool "ztpswitch" and configures the new node inside that pool with the name "switch0".
Subsequent ZTP-capable switches can use the same naming-pool, which names them "switch1", "switch2", etc.

The cluster administrator can then use:

230 Chapter 4. Administration

https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt
https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt

ICE ClusterWare Documentation, Release 12.4.0

scyld-nodectl -i switch2 <action>
scyld-nodectl -i switch* <action2>

to perform an action on a specific switch or a common action on all switches in that naming-pool.

Configure each ZTP node to boot using a ZTP boot script. A boot script may be written in Bash or Python. As with other
scripts, the first line should be #!/path/to/interpreter, e.g. #!/bin/bash. Some switches also allow Perl, Ruby,
or a vendor-specific language. These scripts execute as user root on the switch and can execute commands supported
by the switch, including triggering Puppet or Ansible runs, downloading files via wget or curl and manipulating or
moving them on the switch, and more. After a successful execution, the script must return status 0.

ZTP boot scripts reside in /opt/scyld/clusterware/kickstarts/. Configure the boot script ztp_config.sh
for the node switch0 using the specific prefix "ztp:":

scyld-nodectl -i switch0 set _boot_config="ztp:ztp_config.sh"

Since switch nodes are ClusterWare nodes, you can use attribute groups to configure this as well:

scyld-attribctl create name=ZtpSwitches
scyld-attribctl -i ZtpSwitches set _boot_config="ztp:ztp_config.sh"
scyld-nodectl -i switch0 join ZtpSwitches

which creates an attribute group "ZtpSwitches" and joins "switch0" into it. All members of that attribute group will
boot the same ztp_config.sh script.

In a multi-headnode cluster, every head node should have the same ZTP boot script installed. Currently this must be
done manually.

At boot time the ZTP-enabled node switch0 executes a DHCP query. The server sees the query, identifies the node
using the client's MAC address in the DHCP request, recognizes the client as a ZTP-enabled node and the node's
_boot_config's "ztp:", then builds a DHCP response that includes a URL of the form http://*<SERVER_IPADDR>*/
boot/ztp_config.sh. The switch then uses standard web protocols to read the URL to download the script and
execute it.

Per the Cumulus Linux guidelines, the script must include the phrase "CUMULUS-AUTOPROVISIONING", usually
in a comment, in order to execute at ZTP boot. Other switch or NOS vendors may require similar keywords.

While the system may provide some limited logging that the ZTP script was run, it may make sense to log any/all com-
mand outputs to a known file for easier debugging and triage. A line such as exec >> /var/log/autoprovision
2>&1 in a bash script writes output to that log file for subsequent commands in the script.

Once a ZTP-switch has been successfully configured and the script returns status 0, it will not execute the ZTP boot
script again, not even at the next reboot of the switch node. To force the switch to re-execute the boot script on the next
reboot, ssh to the switch and execute sudo ztp -–reset.

4.48. Managing Zero-Touch Provisioning (ZTP) 231

CHAPTER

FIVE

ARTICLES

The following articles provide instructions for advanced ICE ClusterWare™ cluster configurations or scenarios.

5.1 ICE ClusterWare Plugin System
The ICE ClusterWare™ Plugin System allows administrators to more quickly change the status and monitoring system
across the entire cluster or on subsets of nodes.

There are 4 types of plugins:

• Status Plugins

– These default to an update every 10 sec, so these are generally sensors or readings that change somewhat
frequently; e.g. the free RAM on a node, or the current CPU load;

• Hardware Plugins

– Called less often than “regular” status plugins, usually every 300 sec, these are sensors and readings that
change less frequently and/or are tied to the hardware itself; e.g. the total RAM on a node, or the CPU
architecture;

• Health-Check Plugins

– Called less often than “regular” status plugins, usually every 300 sec, these are sensors and readings that can
be thought of as answering the question “is this compute node operating correctly?”; the values will usually
be “healthy” or “unhealthy”, but may include a time-stamp (indicating that the plugin is still calculating the
value) or a longer message such as “unhealthy; some text on why the node is unhealthy”;

• Telegraf Plugins

– These are really smaller, more granular Telegraf config files that the ClusterWare platform can individually
enable/disable.

If admins know that they want some plugins permanently enabled, they can build those plugins into the disk images that
the node boots from. These “built-in” plugins are always enabled and they cannot be disabled later except by changing
the disk image.

For information that may only be needed some of the time, admins can add arbitrary plugins to a node using the
_status_plugins list (with similar attributes for hardware, health, and telegraf). These on-the-fly plugins can be
turned on and off at any time simply by setting, overwriting, or clearing that node attribute. E.g.:

scyld-nodectl –all set _status_plugins=chrony,ipmi

would enable the chrony and ipmi status plugins. While:

scyld-nodectl –all set _status_plugins=chrony

232

ICE ClusterWare Documentation, Release 12.4.0

would keep chrony enabled but disable ipmi (since it is not listed anymore).

Best Practices
While the ability to enable/disable plugins in an ad-hoc fashion can be powerful, basic best practices still hold:

• It may be helpful to consider the ClusterWare software as “the management tool” and Telegraf as “the monitoring
tool”:

– Information which you may want to take action on should be included in the status, hardware, or health
updates, and should be permanently enabled in scripts-enabled so that they are available when that
action is needed later on;

– Information that might be useful for long-term analyses and trends should be stored in Telegraf.

• Frequent changes to plugins may make the underlying data less useful. If a parameter exists at some times and
not at others, it will be difficult to make future decisions based on any changes seen in that parameter.

• Any data that will be viewed through Grafana should be built into the image (in telegraf-enabled), otherwise
the data may not exist and any Grafana dashboards may produce empty charts.

• For more security-conscious admins, any security-relevant plugins should be enabled in the scripts-enabled
or telegraf-enabled directories, making them permanently enabled and more resistant to tampering.

For more information:

5.1.1 Status Plugins
Status plugins are used to report useful information about the compute node back to the server, e.g. CPU load, memory
usage, available disk space, etc. This may be used for simple status monitoring to get an overall sense of how loaded
the cluster is, for example:

scyld-nodectl --all status -L

And since this data is stored in the ICE ClusterWare™ database, it can also be used to target actions against groups of
nodes:

scyld-nodectl -s “status[ram_free] < 1GB” ls

This would select (-s) all nodes with less than 1GB of free memory and then call the “ls” command on those nodes
(i.e. listing those nodes); any other node command could also be executed here (power on/off, reboot, etc.).

Default frequency is data collection every 10 seconds but this may be overridden on a node-by-node basis with attribute
_status_secs.

For larger-scale management and control, one can set the _status_plugins and/or _status_secs attributes inside
an attribute group and then join nodes to that group.

Building Status Plugins into an Image
The current approach creates new directories in the clusterware-node package that must be installed on all nodes:
scripts-available/status and scripts-enabled/status. The scripts-available/status directory is
populated with Penguin-provided scripts that will provide useful status information in a variety of categories. An
admin can copy or symlink those scripts into scripts-enabled/status to permanently add them to the image.

For example, to include the timedatectl plugin to the image:

% scyld-modimg -iNewImage -chroot -upload -overwrite
Downloading and unpacking image f21b65b1......0aafef663
100.0% complete, elapsed: 0:00:02.2 remaining: 0:00:00.0
elapsed: 0:00:06.0

(continues on next page)

5.1. ICE ClusterWare Plugin System 233

ICE ClusterWare Documentation, Release 12.4.0

(continued from previous page)

Executing step: Chroot
Dropping into a /bin/bash shell. Exit when done.
[CW:NewImage /]# cd /opt/scyld/clusterware-node/scripts-enabled/status/
[CW:NewImage status]# ln -s ../../scripts-available/status/timedatectl.sh .
[CW:NewImage status]# exit

Upon reboot, any nodes using NewImage will have timedatectl enabled automatically.

Note that scripts added to scripts-enabled/status are permanently enabled and cannot be disabled later without
rebuilding and redeploying the disk image.

Admins can also create their own scripts (see Creating New Plugins) and add them to either scripts-available
or scripts-enabled. Placing them in scripts-available would allow for future on-the-fly enabling/disabling of
that script.

On-The-Fly Plugins
An admin can enable and disable “on-the-fly” plugins by adding or removing them from the _status_plugins at-
tribute.

If _status_plugins=nvidia, then the system will look for the script in scripts-available/status/nvidia.sh.

Available status plugins
• corestatus

– provides basic information about the server: uptime, load average, free RAM, current time measurement,
loaded modules and kernel command line, OS release, and ssh keys

– Note that ram_free is reported in KiB, not bytes; so ram_free=1000 indicates that 1024000 bytes of
memory is currently free

• corenetwork

– provides basic network information about the server; for each network device: IP address(es) and MAC

• selinux

– provides basic information on whether selinux is running and what mode it is in, also reports on FIPS if it
can determine that too.

• ipmi

– provides basic information that it can find through IPMI

• virt

– provides basic information if the system is running on a virtual machine

• chrony

– provides basic status on the Chrony (time-sync) daemon. Many queueing systems, as well as ClusterWare
itself, require well-synchronized clocks across the cluster, so this status information could be useful in
triaging, e.g., Slurm start-up issues.

• timedatectl

– provides basic status on the time and date system in the kernel. Again, many parts of a cluster need accurate
time-sync to work properly.

234 Chapter 5. Articles

ICE ClusterWare Documentation, Release 12.4.0

ò Note

Changes to _status_plugins will be processed on the next status-update cycle, usually every 10 seconds unless
changed by the admin.

5.1.2 Hardware Plugins
Hardware plugins are similar to status plugins but are called less frequently since they are assumed to be more static
kinds of information, e.g. the motherboard serial number or CPU vendor information. They are stored as a sub-field
of the node's information and can be viewed with:

scyld-nodectl --all ls -L

As with status plugins, scripts-available/hardware is populated with Penguin-provided scripts covering a range
of hardware options.

Default frequency is data collection every 300 seconds but this may be overridden on a node-by-node basis with attribute
_hardware_secs.

For larger-scale management and control, one can set the _hardware_plugins and/or _hardware_secs attributes
inside an attribute group and then join nodes to that group.

Building Hardware Plugins into an Image
As with status plugins, admins can sym-link or add scripts to the scripts-enabled/hardware directory inside a
disk image.

On-The-Fly Plugins
The _hardware_plugins attribute is used for enabling/disabling hardware plugins on-the-fly.

If _hardware_plugins=infiniband, then the system will look for the script in scripts-available/hardware/
infiniband.sh.

Available Hardware Plugins
• corehardware

– provides basic hardware information about the server: total RAM, CPU count, CPU architecture, CPU
model, BIOS/UEFI mode, boot style, vendor and product information, BIOS version/date/vendor

– Note that ram_total is reported in KiB, not bytes; so ram_total=1000 indicates that 1024000 bytes of
total memory is available

• infiniband

– provides basic information about any Infiniband network devices found on the server

• storage

– provides basic information about any storage devices found, including NVME

• nvidia

– provides basic information about an NVIDIA GPUs or accelerators

ò Note

Changes to _hardware_plugins will likely be detected on the next status cycle, usually every 10 seconds, but will
not be processed until the next hardware-update cycle, usually every 300 seconds unless changed by the admin.

5.1. ICE ClusterWare Plugin System 235

ICE ClusterWare Documentation, Release 12.4.0

5.1.3 Health-Check Plugins
Health-check plugins are intended for more straightforward information about a node's health; information that should
not be changing as frequently. They are stored as a sub-field of the "status" information of a node and can be viewed
with:

scyld-nodectl --all status -L

As with status plugins, scripts-available/health is populated with Penguin-provided scripts on a variety of
topics.

Default frequency is data collection every 300 seconds but this may be overridden on a node-by-node basis with attribute
_health_secs.

For larger-scale management and control, one can set the _health_plugins and/or _health_secs attributes inside
an attribute group and then join nodes to that group.

Building Health Plugins into an Image
As with status plugins, admins can sym-link from scripts-available/health into scripts-enabled/health
inside a disk image.

On-The-Fly Health Plugins
Similar to status plugins, admins can set the attribute _health_plugins to indicate a list of on-the-fly health plugins.

If _health_plugins=rasmem, then the system will look for the script in scripts-available/health/rasmem.sh.

Available Health Plugins
• disk

– provides a basic disk-usage check based on a threshold. If the storage on the node is greater than the
threshold, the node is considered "unhealthy".

– Set the attribute _hc_disk_avail_threshold to set the threshold (can be done at the node- or group-
level); can be “123” (amount in KB) or “75%” (for percentage based calculations).

• mem

– provides a basic "memory health" check based on a threshold. If the current memory used is greater than
the threshold, the node is considered "unhealthy".

– Set the attribute _hc_mem_avail_threshold to set the threshold (can be done at the node- or group-level);
can be “500” (amount in KB) or “75%”.

• pingtest

– provides a basic ""network health" check based on whether the node can successfully ping one or more
servers. Each server is pinged 3 times and if any of the pings fail, the node is considered "unhealthy". If the
servers can be pinged but the average ping time is greater than the threshold, the node is also considered to
be "unhealthy".

– Set the attribute _hc_ping_servers to give a comma-separated list of servers to ping (defaults to the
parent head node).

– Set the attribute _hc_ping_msecs to identify the average ping threshold (default is 5 msec).

• rasmem

– uses the ras-mc-ctl tool to provide a basic “memory hardware” check.

• timesync

236 Chapter 5. Articles

ICE ClusterWare Documentation, Release 12.4.0

– provides a basic "time sync" check based on whether the timedatectl tool considers the node to be
synchronized to upstream time servers. If the tool reports that it is not synchronized, then the node is
considered "unhealthy".

ò Note

Changes to _health_plugins will likely be detected on the next status cycle, usually every 10 seconds, but will
not be processed until the next health-update cycle, usually every 300 seconds unless changed by the admin.

5.1.4 Telegraf Plugins
Where the status plugins are small scripts that are run during the periodic status-update cycle, Telegraf plugins are
small configuration files that can be enabled/disabled by the HPC-admin. A telegraf plugin is usually targeted at one
particular kind of data - e.g. CPU usage or memory usage.

The cluserware-telegraf package can be installed on either a compute node or a head node, but the on-the-fly plugin
system currently only works on compute nodes.

For larger-scale management and control, one can set the _telegraf_plugins attribute inside an attribute group and
then join nodes to that group.

Building Telegraf Plugins into an Image
Similar to status plugins, there is another directory:

/opt/scyld/clusterware-telegraf/telegraf-available

that contains Penguin-provided config files. Those can be sym-linked into ./telegraf-enabled inside a disk Image.

On-The-Fly Telegraf Plugins
On compute nodes, an admin can enable/disable “on-the-fly” plugins by setting or clearing out that node's
_telegraf_plugins attribute.

ò Note

Changes to _telegraf_plugins will force a full restart of the Telegraf daemon, so frequent changes could cause
performance degradation.

Available status plugins
• amd-rocm-smi

– provides information from AMD ROCm-based GPUs, including GPU and memory usage.

• chrony

– provides information from Chrony on the time synchronization of the system.

• cpu

– gives aggregate and per-CPU-core utilization data.

• cw-attribs

– injects ICE ClusterWare™ node attributes and fields into the Telegraf/Influx data stream. This can be
helpful for customizing dashboards for different "types" of nodes.

5.1. ICE ClusterWare Plugin System 237

ICE ClusterWare Documentation, Release 12.4.0

– By default, all node attributes and fields will be sent to Telegraf. This can be modified with the reserved
attribute, _telegraf_omit_pattern. The pattern is an awk regex, usually of the form (word1|word2)
and any matching fields will be omitted.

• disk

– provides disk space utilization (used and free; both inode and capacity utilization).

• disk_head

– disk utilization, customized for head nodes; includes more disk types in its data.

• diskio

– gathers per-device disk I/O rates.

• hddtemp

– reports data from hddtemp daemons.

• infiniband

– gathers information for all Infiniband devices and ports on the system.

• intel-powerstat

– provides data from Intel's Powerstat features.

• interrupts

– reports data from IRQs, including interrupts and soft-interrupts.

• ipmisensor

– collects data from the IPMI system. Note that more configuration may be required for this plugin to provide
useful data (e.g. full URL, username, password, etc.)

• kernel

– gathers kernel statistics from /proc/stat.

• kernel-vmstat

– gathers kernel statistics from /proc/vmstat.

• lm-sensors

– collects sensor information from the lm-sensors package.

• lustre

– gathers job-level data on Lustre file system usage. Note that more configuration may be required for this
plugin to provide useful data.

• mem

– reports memory statistics for the system, including free and used amounts as well as vmalloc, cache, high-
memory areas.

• net

– provides aggregate and per-device network information including bytes sent and received, packets sent and
recevied, errors, and more.

• netresponse

– reports the network response time to contact the parent head node.

• netstat

238 Chapter 5. Articles

ICE ClusterWare Documentation, Release 12.4.0

– gathers TCP metrics from lsof, including established connections, time-wait, and socket counts.

• nfsclient

– collects per-mount-point statistics for any NFS file systems (/proc/self/mountstats).

• nvidia-smi

– provides information from NVIDIA GPUs, including GPU and memory usage, temperatures, and more.

• ping

– records ping times back to the current parent head node.

• processes

– reports information on the number of processes on the system that are in different states (zombie, sleeping,
running, etc.).

• rsyslog

– provides a local listening port which can receive syslog-formatted data (e.g. from rsyslog forwarding).

– Note that by default the ClusterWare platform does not forward compute-node data. In addition to the
rsyslog telegraf plugin, admins must also have configured rsyslog forwarding. The ClusterWare platform
does include a "disabled" rsyslog config file: /etc/rsyslog.d/cw_local_telegraf.conf.disabled.
This can be enabled by simply removing the .disabled from the filename.

• swap

– provides information about swap memory usage.

• temp

– collects temperature data from sensors on the system.

Head Node Functionality
The ClusterWare-telegraf plugin system has reduced functionality on head nodes. Since head nodes do not cur-
rently have attributes, there is no way to do on-the-fly changes to the Telegraf plugins and so adding entries to
telegraf-enabled is the only way to add plugins to the system.

Additionally, while the compute nodes will automatically detect changes and start/restart Telegraf automatically,
changes to head nodes must be handled manually.

Once the telegraf-enabled directory is ready on the head-node, admins should run reconfig-telegraf.sh to
push the enabled plugins into production (this will also restart Telegraf).

/opt/scyld/clusterware-telegraf/bin/reconfig-telegraf.sh

ò Note

Changes to _telegraf_plugins will be processed by the ClusterWare platform on the next status-update cycle,
usually every 10 seconds unless changed by the admin. However, it may take several seconds before Telegraf
actually restarts, and it then has to go through its own “data refresh” cycle (again, usually every 10 seconds, unless
changed by the admin). So there could be a non-trivial delay (30-40 sec) before a new plugin's data is actually
visible on a dashboard.

5.1. ICE ClusterWare Plugin System 239

ICE ClusterWare Documentation, Release 12.4.0

5.1.5 Creating New Plugins
The ICE ClusterWare™ platform provides a flexible plugin system for collecting a variety of node information – status,
hardware, health, and telegraf monitoring. There are 4 types of plugins:

• Status Plugins

– These are called every status cycle, usually every 10 sec; can return any datatype: e.g. free RAM is given
as a float, distro is a string, etc.; one script can return multiple “sensor” readings;

• Hardware Plugins

– These called less often than “regular” status plugins, usually every 300 sec; can return any datatype; one
script can return multiple “sensor” readings;

• Health-Check Plugins

– These are called less often than “regular” status plugins, usually every 300 sec; returns “healthy”, “un-
healthy”, or a time-stamp (indiciating that the plugin is still calculating the value); one script can return
multiple “sensor” readings;

• Telegraf Plugins

– These are really smaller, more granular Telegraf config files that the ClusterWare platform can individually
enable/disable; each script is a self-contained piece of Telegraf configuration which contains settings for a
given Telegraf “input” module.

ò Note

While plugins do run as root on the compute nodes, they can still be restricted by SELinux.

5.1.5.1 Creating Status Plugins

Broadly speaking, a status plugin is a shell-script that returns one or more JSON-like blobs of data for a named sensor
reading:

“<sensor_name>”: <JSON_data>

For a single plugin that emits multiple sensor readings, they should be separated by a newline:

“<sensor_name1>”: <JSON_data>
“<sensor_name2>”: <JSON_data>

The script runs as root and can use any tool, or sequence of tools, on the system in order to collect the information and
format it properly.

While the script could reach across the network to run commands on other systems, this would potentially take signif-
icantly longer to process and so it is discouraged, especially in status plugins, although pinging other systems or doing
more complicated communication checks may be appropriate in health checks.

The first line of the script should be a #! line giving the shell or interpreter to use. Every plugin is sent the path to
the clusterware-node package as the first argument since there is a useful “library” of routines in the functions.
sh script. While less useful for the usually-dynamic status information, every script is sent a cache directory as the
second argument, usually /opt/scyld/clusterware-node/etc/status.d. This directory can be used to store
information for the next cycle rather than recomputing some lengthy calculation.

The sensor name can be any quoted string, though it is recommended to not have spaces or odd characters to avoid later
problems when trying to use the data, we suggest using alphanumeric characters and underscores (A-Za-z0-9_). The
JSON-data portion can be any JSON data: a string, number, boolean, list, or dictionary.

240 Chapter 5. Articles

ICE ClusterWare Documentation, Release 12.4.0

As the plugins are just scripts, to debug them, simply execute them manually and verify that the output is correct. Note
that the plugin system does very little error-checking on the scripts, and since it is executing so often, it does not do
a formal check of the JSON. If bad data is returned, it will cause failures in the status-update cycle. On the compute
node, the failure will likely be silent (unless _status_debug=1) so it is best to check the head node logs to get more
information on the error.

ò Note

Changes to _status_plugins will be processed on the next status-update cycle, usually every 10 seconds unless
changed by the admin.

5.1.5.2 Creating Hardware Plugins

Broadly speaking, a hardware plugin is also just a shell-script that returns one or more JSON-like blobs of data for a
named sensor reading:

“<sensor_name>”: <JSON_data>

For a single plugin that emits multiple sensor readings, they should be separated by a newline. As with status plugins,
the script can run any tool, or sequence of tools, on the system.

The first line of the script should be a #! line giving the shell or interpreter to use.

Since hardware information is usually more static, it may make sense for hardware plugins to calculate information
once and then cache it to a file on disk so as to reduce future computational effort needed. Every script is sent the cache
directory as the second argument, usually /opt/scyld/clusterware-node/etc/hardware.d. Every hardware
plugin is also sent the path to the clusterware-node package as the first argument since there is a useful “library” of
routines in the functions.sh script.

The sensor name can be any quoted string, though it is recommended to not have spaces or odd characters to avoid later
problems when trying to use the data, we suggest using alphanumeric characters and underscores (A-Za-z0-9_). The
JSON-data portion can be any JSON data: a string, number, boolean, list, or dictionary.

As the hardware plugins are just scripts, to debug them, simply execute them manually and verify that the output is
correct. As with the status plugins, there is very little error-checking done on the scripts.

ò Note

Changes to _hardware_plugins will likely be detected on the next status cycle, usually every 10 seconds, but will
not be processed until the next hardware-update cycle, usually every 300 seconds unless changed by the admin.

5.1.5.3 Creating Health-Check Plugins

A health plugin is a shell-script that returns one or more strings for a named sensor reading:

"<sensor_name>": "<string>"

where the string is usually either “healthy” or “unhealthy”, but any string can be sent. If the first word in the string
is “healthy”, then it is assumed that the health-check passed; any other string is considered unhealthy (not just the
word “unhealthy”). One can optionally communicate more specific information in the string, e.g. any errors or issues
that were detected. I.e. heathy: ping time was 0.164 ms would also indicate a healthy check; unhealthy:
could not ping server or simply could not ping server would also indicate an unhealthy check (since it
does not start with healthy) and also give a possible path to help triage the problem. If the plugin emits more than
one sensor reading, they should be separated by newlines.

5.1. ICE ClusterWare Plugin System 241

ICE ClusterWare Documentation, Release 12.4.0

The sensor name can be any quoted string, though it is recommended to not have spaces or odd characters to avoid later
problems when trying to use the data, we suggest using alphanumeric characters and underscores (A-Za-z0-9_).

As with status plugins, the health-check script can run any tool, or sequence of tools, on the system. The first line of
the script should be a #! line giving the shell or interpreter to use.

Every script is given the cache directory as the second argument, usually /opt/scyld/clusterware-node/etc/
health.d. Lengthier calculations can potentially be run once and stored there for future use. Every health-check
plugin is also sent the path to the clusterware-node package as the first argument since there is a useful “library” of
routines in the functions.sh script.

Prior to sending the data to the head node, the compute node will assess all the health-check values and assign the
node a global "health" status in the node's _health attribute. If any health check reports unhealthy, then the node is
considered unhealthy; if all checks report healthy, then the node is considered healthy.

As the health-check plugins are just scripts, to debug them, simply execute them manually and verify that the output is
correct. As with the status plugins, there is very little error-checking done on the scripts.

ò Note

Changes to _health_plugins will likely be detected on the next status cycle, usually every 10 seconds, but will not
be processed until the next health-update cycle, usually every 300 seconds unless changed by the admin.

5.1.5.4 Creating Telegraf Plugins

Where the status plugins are small scripts that are run during the periodic status-update cycle, Telegraf plugins are
small configuration files that can be enabled/disabled by the HPC-admin.

“Developing” Telegraf plugins for the ClusterWare platform really means the creation of config files, often by splitting
up one of the larger Telegraf sample configuration files into smaller, self-contained pieces. Developing brand-new
Telegraf plugins is outside the scope of this document.

A list of Telegraf plugins can be found at: https://docs.influxdata.com/telegraf/v1/plugins/

ò Note

head nodes can only use the telegraf-enabled directory as there is no _telegraf_plugins attribute. Admins must run
the /opt/scyld/clusterware-telegraf/bin/reconfig-telegraf.sh script manually to push any changes
into production.

Examples
As an example, if a cluster was running the Ceph file system, then one might want to use the Telegraf “inputs.ceph”
module:

https://github.com/influxdata/telegraf/blob/release-1.28/plugins/inputs/ceph/README.md

To do so, create a new plugin file: /opt/scyld/clusterware-telegraf/telegraf-available/ceph.conf with
the following:

[[inputs.ceph]]
interval = '1m'
ceph_binary = "/usr/bin/ceph"
socket_dir = "/var/run/ceph"
mon_prefix = "ceph-mon"
osd_prefix = "ceph-osd"

(continues on next page)

242 Chapter 5. Articles

https://docs.influxdata.com/telegraf/v1/plugins/
https://github.com/influxdata/telegraf/blob/release-1.28/plugins/inputs/ceph/README.md

ICE ClusterWare Documentation, Release 12.4.0

(continued from previous page)

mds_prefix = "ceph-mds"
rgw_prefix = "ceph-client"
socket_suffix = "asok"
ceph_user = "client.admin"
ceph_config = "/etc/ceph/ceph.conf"
gather_admin_socket_stats = true
gather_cluster_stats = false

With that file stored in telegraf-available, the admin can either sym-link it into telegraf-enabled or add it to the
_telegraf_plugins attribute:

scyld-nodectl –all set _telegraf_plugins=ceph

Once the plugin is enabled through either method, the Telegraf daemon on the compute nodes will begin sending Ceph
data to the head nodes.

Another example would be to ping several remote servers instead of just the parent head node. This could be useful, for
example, to detect issues with a node's connection to the primary storage server and a network gateway, for example.
In this case, we could edit the ping.conf file in telegraf-available and include the storage server name in the list of
URLs to ping:

[[inputs.ping]]
List of urls to ping
urls = ["parent-head-node", “storage-server”, “gateway-server”]
number of pings to send per collection (ping -c <COUNT>)
count = 1

The documentation on the Ping plugin:

https://github.com/influxdata/telegraf/blob/release-1.28/plugins/inputs/ping/README.md

shows a number of other options that admins may find useful to configure. If an existing file is modified, a restart of
Telegraf will be necessary to have the system re-read the configuration file (systemctl restart telegraf).

Note that Telegraf's exec and execd modules allow for arbitrary scripts or executables to be run, with the output being
ingested into Telegraf. This can be a very powerful tool for admins to write custom scripts that might be very specific
to their cluster.

See the Influxdata documentation for more information:

• The exec plugin launches a new shell every update cycle when it runs the script https://github.com/influxdata/
telegraf/blob/release-1.28/plugins/inputs/exec/README.md

• The execd plugin creates one shell during Telegraf start-up, and that shell is assumed to launch a daemon pro-
cess which repeatedly sends data https://github.com/influxdata/telegraf/blob/release-1.28/plugins/inputs/execd/
README.md

5.2 Using Ansible
A compute node can be configured to execute an Ansible playbook at boot time or after the node is up. In the follow-
ing example, the cluster administrator creates a git repository hosted by the ICE ClusterWare™ head nodes, adds an
extremely simple Ansible playbook to that git repository, and assigns a compute node to execute that playbook.

Install the clusterware-ansible package into the image (or images) that you want to support execution of an Ansible
playbook:

5.2. Using Ansible 243

https://github.com/influxdata/telegraf/blob/release-1.28/plugins/inputs/ping/README.md
https://github.com/influxdata/telegraf/blob/release-1.28/plugins/inputs/exec/README.md
https://github.com/influxdata/telegraf/blob/release-1.28/plugins/inputs/exec/README.md
https://github.com/influxdata/telegraf/blob/release-1.28/plugins/inputs/execd/README.md
https://github.com/influxdata/telegraf/blob/release-1.28/plugins/inputs/execd/README.md

ICE ClusterWare Documentation, Release 12.4.0

scyld-modimg -i DefaultImage --install clusterware-ansible --upload --overwrite

The administrator should amend their PATH variable to include the git binaries that are provided as part of the cluster-
ware package in /opt/scyld/clusterware/git/. This is not strictly necessary, though the git in that subdirectory
is often significantly more recent than the version normally provided by a base distribution:

export PATH=/opt/scyld/clusterware/git/bin:${PATH}

The administrator should add their own personal public key to their ClusterWare admin account. This key will be
populated into root user's (or _remote_user's) authorized_keys file on newly booted compute nodes. See Compute
Node Remote Access for details. In addition, this provides simple SSH access to the git repository:

scyld-adminctl up keys=@/full/path/.ssh/id_rsa.pub

Adding the localhost's host keys to a personal known_hosts file is not strictly necessary, though it will avoid an SSH
warning that can interrupt scripting:

ssh-keyscan localhost >> ~/.ssh/known_hosts

Now create a ClusterWare git repository called "ansible". This repository will default to public, meaning it is accessible
read-only via unauthenticated HTTP access to the head nodes and therefore should not include unprotected sensitive
passwords or keys:

scyld-clusterctl gitrepos create name=ansible

Note that being unauthenticated means the HTTP access mechanism does not allow for git push or other write op-
erations. Alternatively the repository can be marked private (public=False), although it then cannot be used for a
client's ansible-pull.

Initially the repository will include a placeholder text file that can be deleted or discarded.

Now clone the git repo over an SSH connection to localhost:

git clone cwgit@localhost:ansible

The administrator could also create that clone on any machine that has the appropriate private key and can reach the
SSH port of a head node.

Finally, create a simple Ansible playbook to demonstrate the functionality:

cat >ansible/HelloWorld.yaml <<EOF

- name: This is a hello-world example
hosts: n*.cluster.local
tasks:
- name: Create a file called '/tmp/testfile.txt' with the content
copy:
content: hello world
dest: /tmp/testfile.txt

EOF

and add that playbook to the "ansible" git repo:

bash -c "\
cd ansible; \
git add HelloWorld.yaml; \

(continues on next page)

244 Chapter 5. Articles

ICE ClusterWare Documentation, Release 12.4.0

(continued from previous page)

git -c user.name=Test -c user.email='<test@test.test>' \
commit --message 'Adding a test playbook' HelloWorld.yaml; \

git push; \
"

Multiple playbooks can co-exist in the git repo.

In a multiple-head node cluster an updated git repository will be replicated to other head nodes in the cluster, so
any client ansible_pull to any cluster head node will see the same playbook and the same commit history. This
replication can require several seconds to complete.

With the playbook now available in the git repo, configure the compute node to execute ansible-pull to download
it at boot time:

scyld-nodectl -i n1 set _ansible_pull=git:ansible/HelloWorld.yaml

Alternatively, to download the playbook from an external git repository on the server named gitserver:

scyld-nodectl -i n1 set _ansible_pull=http://gitserver/path/to/repo/root:HelloWorld.yaml

Either format can optionally end with "@<gitrev>", where <gitrev> is a specific commit, tag, or branch in the target
git repo.

Use the _ansible_pull_args attribute to specify any arguments to the underlying ansible-pull command.

You may now reboot the node and wait for it to boot to an up status after the playbook has executed:

scyld-nodectl -i n1 reboot then waitfor up

You can verify that the HelloWorld.yaml playbook executed:

scyld-nodectl -in1 exec cat /tmp/testfile.txt ; echo

Note that during playbook execution the node remains in the booting status, changing to an up status after the playbook
completes, assuming the playbook is not fatal to the node. That status may timeout to down (with no ill effect) when
executing a lengthy playbook before switching to up after playbook completion. Administrators are advised to log the
ansible progress to a known location on the booting node, such as /var/log/ansible.log.

The clusterware-ansible package supports another attribute, _ansible_pull_now, which uses the same syntax as _ansi-
ble_pull. Prior to first use, the administrator must enable the cw-ansible-pull-now service inside the chroot image:

systemctl enable cw-ansible-pull-now

and then on a running compute node, start the service:

systemctl start cw-ansible-pull-now

When the attribute is present and the service has been enabled and started, the node will download and execute the
playbook during the node's next status update event, which occur every 10 seconds by default. Once the node completes
execution of the playbook, it directs the head node to prepend "done" to the _ansible_pull_now attribute to ensure the
script does not run again.

5.2. Using Ansible 245

ICE ClusterWare Documentation, Release 12.4.0

5.2.1 Using Node Attributes with Ansible
Admins can also change how playbooks run by reading ClusterWare node attributes into Ansible variables. The
clusterware-node package includes a library of shell functions that can be used, in particular, attribute_value
reads an attribute out of nodes configuration.

Inside the playbook, one can register a variable using the output of a command, and that command can reference the
attribute_value function:

- name: Read the slurm_server attribute
shell:
executable: /bin/bash
cmd: "source /opt/scyld/clusterware-node/functions.sh && attribute_value slurm_server

→˓"
register: slurm_server

This snippet would set an Ansible variabled called slurm_server that would read the node attribute of the same name.
Any ClusterWare or user-defined attribute can be referenced in this way. If a default value is needed, it can be given as
a second argument: attribute_value attrname defaultvalue.

5.2.2 Applying Ansible Playbooks to Images
Cluster administrators commonly create and deploy a golden image containing all of the necessary libraries, tools,
and applications. Given the frequent nature of software updates, the golden image can be out of date soon after it is
created. With this in mind, many production clusters collect required changes into an Ansible playbook and then use
the _ansible_pull functionality to deploy that playbook to ClusterWare nodes at boot time, or even to booted nodes
using the _ansible_pull_now functionality.

Applying changes from an Ansible playbook adds a delay between when the node begins booting and when the node is
ready to accept jobs after fully booting. Eventually this delay becomes cumbersome and the cluster administrator will
want to flush the changes out of the playbook and into the image. The scyld-modimg –deploy <PATH> command
supports executing a local playbook into the chroot.

Using this functionality requires that the clusterware-ansible package is installed on the head node and that the
community.general Ansible Galaxy collection is installed for the chroot connection type. The following pair of
commands installs the package on the system and installs the Ansible collection for the root user:

sudo dnf install --assumeyes --enablerepo=scyld* clusterware-ansible
sudo -E /opt/scyld/clusterware-ansible/env/bin/ansible-galaxy \
collection install community.general

The collection needs to be available to root because the ansible-playbook command is executed using sudo to allow
full write permissions to all files within the chroot.

The scyld-modimg command assumes that any path that ends with .yaml is an Ansible playbook and uses the con-
figured software to execute that playbook within the chroot.

scyld-modimg -iDefaultImage --deploy HelloWorld.yaml \
--progress none --upload --overwrite --discard-on-error

The new --discard-on-error argument prevents the tool from asking for user confirmation before uploading. It
assumes that the user wants to keep the result of a successful run but stop if an error was encountered. The following
is an example of the expected output from the previous command:

[admin@cwhead ~]$ scyld-modimg -iDefaultImage --deploy HelloWorld.yaml \
--progress none --upload --overwrite --discard-on-error

Treating HelloWorld.yaml as an ansible playbook
(continues on next page)

246 Chapter 5. Articles

ICE ClusterWare Documentation, Release 12.4.0

(continued from previous page)

Downloading and unpacking image DefaultImage
Executing step: Ansible ['/opt/scyld/clusterware-ansible/bin/ansible-playbook',
→˓'HelloWorld.yaml']
DefaultImage : ok=2 changed=1 unreachable=0 failed=0 skipped=0 ␣

→˓rescued=0 ignored=0
step completed in 0:00:06.2

Executing step: Upload
Repacking DefaultImage

fixing SELinux file labels...
done.

Checksumming...
Cleaning up.
Checksumming image DefaultImage
Replacing remote image.
step completed in 0:09:33.7

5.3 Using Singularity
Singularity is available in the ICE ClusterWare™ platform by installing the singularity-scyld RPM, which is built
from source developed by Sylabs Inc., or by installing the singularity RPM found in the EPEL yum repository. See
https://www.sylabs.io/docs for their extensive documentation.

The following example creates a Singularity container openmpi.sif containing openmpi3.1, and placing that container
in a bootable image.

First create the openmpi.def Singularity definition file, then use that file to create the container:

Use quoted "EOF" for bash to avoid % and $ expansions; just EOF for sh.
cat <<-"EOF" >openmpi.def
BootStrap: yum
OSVersion: 7
MirrorURL: http://mirror.centos.org/centos-%{OSVERSION}/%{OSVERSION}/os/$basearch/
Include: yum

%files
/etc/yum.repos.d/clusterware.repo /etc/yum.repos.d/clusterware.repo

%environment
PATH=/opt/scyld/openmpi/3.1.3/gnu/bin:$PATH
LD_LIBRARY_PATH=/opt/scyld/openmpi/3.1.3/gnu/lib:/opt/scyld/slurm/lib64:$LD_LIBRARY_

→˓PATH
MPI_HOME=/opt/scyld/openmpi/3.1.3/gnu
MPI_LIB=/opt/scyld/openmpi/3.1.3/gnu/lib
MPI_INCLUDE=/opt/scyld/openmpi/3.1.3/gnu/include
MPI_SYSCONFIG=/opt/scyld/openmpi/3.1.3/gnu/etc

%post
IMPORTANT:
If instead using "OSVersion: 6" instead of "OSVersion 7" above,
then for any subsequent `rpm` or `yum`, add:
rpm --rebuilddb
echo "Installing openmpi3.1-gnu rpm"

(continues on next page)

5.3. Using Singularity 247

https://www.sylabs.io/docs

ICE ClusterWare Documentation, Release 12.4.0

(continued from previous page)

yum -y install openmpi3.1-gnu
exit 0

EOF

Create the Singularity chroot "/tmp/openmpi" in which updates can be made.
sudo singularity build --sandbox /tmp/openmpi openmpi.def

Make a sample update: build an openmpi test program inside the chroot.
sudo singularity exec -w /tmp/openmpi \

mpicc -o /usr/bin/ring /opt/scyld/openmpi/3.1.3/gnu/examples/ring_c.c

Finalize the sandbox chroot into the Singularity container "openmpi.sif".
sudo singularity build openmpi.sif /tmp/openmpi

Create a bootable image that hosts the Singularity container and can execute openmpi applications:

Clone a new image instead of modifying an existing image.
scyld-imgctl -i DefaultImage clone name=SingularityImage

Install needed packages inside the new image.
scyld-modimg -i SingularityImage --freshen --overwrite --no-discard \

--install singularity-scyld,openmpi3.1-gnu --upload

Now get into the chroot of the Singularity image.
scyld-modimg -i SingularityImage --chroot --overwrite --upload --no-discard

Inside the root, add your userid (e.g., "myuserid") if necessary, which
creates a /home/myuserid/ directory, and import the Singularity container file.
useradd myuserid
scp myuserid@localhost:/home/myuserid/openmpi.sif /home/myuserid/
exit

Boot nodes n0 and n1 with SingularityImage:

scyld-bootctl -i DefaultBoot clone name=SingularityBoot
scyld-bootctl -i SingularityBoot update image=SingularityImage
scyld-nodectl -i n[0-1] set _boot_config=SingularityBoot
Now reboot nodes n0 and n1
scyld-nodectl -i n[0-1] reboot

When the nodes are up, then initialize passphrase-less key-based access, as described in OpenMPI, MPICH, and/or
MVAPICH.

Now you can run the ring program from n0 (or n1):

logged into n0, or using a job scheduler
mpirun -np 2 --host n0,n1 singularity exec openmpi.sif /usr/bin/ring

Or from the head node:

If not already installed
sudo yum install singularity-scyld openmpi3.1-gnu --enablerepo=scyld*

(continues on next page)

248 Chapter 5. Articles

ICE ClusterWare Documentation, Release 12.4.0

(continued from previous page)

module load openmpi/gnu/3.1.3
mpirun -np 2 --host n0,n1 singularity exec openmpi.sif /usr/bin/ring

5.4 Using Docker for Compute Nodes
The ICE ClusterWare™ platform supports Docker, which is available from CentOS.

The following example shows Docker being used to execute the pre-built Docker "Hello World" image. First preferably
create a new image:

Clone a new image instead of modifying an existing image.
scyld-imgctl -i DefaultImage clone name=DockerImage

Install needed packages inside the new image.
NOTE: This uses the default _boot_style=rwram and _boot_rw_layer=overlayfs
scyld-modimg -i DockerImage --freshen --overwrite --no-discard \

--install docker --exec "systemctl enable docker" --upload

Alternatively, the administrator may choose to use a _boot_style of roram or iscsi for nodes using this DockerImage. To
accomplish this, more must be done to the DockerImage image and to all the nodes that use that image. For example:

Additionally create file /etc/rwtab.d/docker in the image.
scyld-modimg -i DockerImage --freshen --overwrite --no-discard \

--install docker --exec "systemctl enable docker" \
--exec "echo 'empty /var/lib/docker' >/etc/rwtab.d/docker" --upload

scyld-nodectl -i <NODES> set _boot_style=roram _boot_rw_layer=rwtab
Or use scyld-attribctl if the <NODES> are in a group.

You will also need to set up IP forwarding on the head node(s) for the node to access the external Internet, which
may likely involve using scyld-modimg to add appropriate nameserver entries to the node's /etc/resolv.conf. See
Configure IP Forwarding for details.

Now boot node n0 with the new DockerImage:

scyld-bootctl -i DefaultBoot clone name=DockerBoot
scyld-bootctl -i DockerBoot update image=DockerImage
scyld-nodectl -i n0 set _boot_config=DockerBoot
Now reboot node n0
scyld-nodectl -i n0 reboot

When node n0 is up, you can initialize passphrase-less key-based access to allow your current administrator userid to
ssh to the node. See OpenMPI, MPICH, and/or MVAPICH. Alternatively, you can simply login as root:

sudo ssh n0

Now as user root on n0, and if n0 can access external Internet websites:

[root@n0] docker run hello-world
Unable to find image 'hello-world:latest' locally
Trying to pull repository docker.io/library/hello-world ...
latest: Pulling from docker.io/library/hello-world
1b930d010525: Pull complete

(continues on next page)

5.4. Using Docker for Compute Nodes 249

ICE ClusterWare Documentation, Release 12.4.0

(continued from previous page)

Digest: sha256:41a65640635299bab090f783209c1e3a3f11934cf7756b09cb2f1e02147c6ed8
Status: Downloaded newer image for docker.io/hello-world:latest

Hello from Docker!
This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:
1. The Docker client contacted the Docker daemon.
2. The Docker daemon pulled the "hello-world" image from the Docker Hub.

(amd64)
3. The Docker daemon created a new container from that image which runs the

executable that produces the output you are currently reading.
4. The Docker daemon streamed that output to the Docker client, which sent it

to your terminal.

To try something more ambitious, you can run an Ubuntu container with:
$ docker run -it ubuntu bash

Share images, automate workflows, and more with a free Docker ID:
https://hub.docker.com/

For more examples and ideas, visit:
https://docs.docker.com/get-started/

Note the Hello from Docker! line in the above output.

5.5 Using Kubernetes
This section provides examples of setting up Kubernetes clusters with ICE ClusterWare™ and non-ClusterWare sys-
tems.

See Kubernetes for a general explanation of how to install and initialize a Kubernetes cluster and scyld-kube for details
about the command and related arguments.

ò Note

All examples assume you have root user or ClusterWare administrator access and that the clusterware-kubeadm
package is installed.

5.5.1 Using a Single Non-ClusterWare System as a Control Plane
1. On the non-ClusterWare system where clusterware-kubeadm is installed, kube1 (10.154.3.1), initialize the local

system as a control plane:

scyld-kube --init

The following messages are printed out after the control plane initialization:

...
To join ClusterWare NODES/IMAGE as worker to this non ClusterWare control plane:
scyld-kube -i NODES --join --token nfg0ku.73f1gre8gxzco1qx --cahash␣

(continues on next page)

250 Chapter 5. Articles

ICE ClusterWare Documentation, Release 12.4.0

(continued from previous page)

→˓sha256:cc999d4001c018a3423238773614bb8d6d8ad720e1f31a8b0e862052a67262da --cluster␣
→˓10.154.3.1
scyld-kube --image IMAGE --join --token nfg0ku.73f1gre8gxzco1qx --cahash␣
→˓sha256:cc999d4001c018a3423238773614bb8d6d8ad720e1f31a8b0e862052a67262da --cluster␣
→˓10.154.3.1

To join non ClusterWare system as worker to this non Clusterware control plane:
scyld-kube --join --token nfg0ku.73f1gre8gxzco1qx --cahash␣
→˓sha256:cc999d4001c018a3423238773614bb8d6d8ad720e1f31a8b0e862052a67262da --cluster␣
→˓10.154.3.1
...

2. Verify the deployment status by running the following command:

kubectl get nodes -o wide

3. Using the messages at the end of step 1 as a guide, join ClusterWare nodes (n[11-14]) as workers with explicit
--token, --cahash, and --cluster arguments to the control plane kube1 (10.154.3.1):

scyld-kube -i n[11-14] --join nfg0ku.73f1gre8gxzco1qx --cahash␣
→˓sha256:cc999d4001c018a3423238773614bb8d6d8ad720e1f31a8b0e862052a67262da --cluster␣
→˓10.154.3.1

4. Create a Kubernetes worker node image with explicit --token, --cahash, and --cluster arguments then boot
n[15-20] with the node image as workers to control plane kube1 (10.154.3.1):

$ scyld-bootctl -i DefaultBoot clone name=KubeWorkerBoot2
$ scyld-imgctl -i DefaultImage clone name=KubeWorkerImage2
$ scyld-kube --image KubeWorkerImage2 --join --token nfg0ku.73f1gre8gxzco1qx --
→˓cahash sha256:cc999d4001c018a3423238773614bb8d6d8ad720e1f31a8b0e862052a67262da --
→˓cluster 10.154.3.1
$ scyld-bootctl -i KubeWorkerBoot2 up image=KubeWorkerImage2
$ scyld-nodectl -i n[15-20] set _boot_config=KubeWorkerBoot2
$ scyld-nodectl -i n[15-20] reboot

5. On EACH non-ClusterWare system that you want to join as a worker and where clusterware-kubeadm is installed,
join the local system to control plane kube1 (10.154.3.1) with explicit --token, --cahash, and --cluster
arguments:

scyld-kube --join --token nfg0ku.73f1gre8gxzco1qx --cahash␣
→˓sha256:cc999d4001c018a3423238773614bb8d6d8ad720e1f31a8b0e862052a67262da --cluster␣
→˓10.154.3.1

6. Verify the deployment status by running the following command:

kubectl get nodes -o wide

You should see kube1 as the control plane and both the ClusterWare and non-ClusterWare systems you joined as
workers in the output.

5.5. Using Kubernetes 251

ICE ClusterWare Documentation, Release 12.4.0

5.5.2 Using Multiple ClusterWare Nodes as a Control Plane
1. Create High Available (HAProxy and Keepalived) configure files with ClusterWare node n21 (10.154.1.121) as

the first control plane node and n22 (10.154.1.122) and n23 (10.154.1.123) as additional control plane nodes:

scyld-kube --prepare-lb 10.154.2.0 n21:10.154.1.121,n22:10.154.1.122,n23:10.154.1.
→˓123

ò Note

10.154.2.0 is an unused IP within the cluster network. It will be the apiserver virtual IP for these Kubernetes
control planes.

2. Initialize the first control plane node on n21:

scyld-kube -i n21 --init-ha

The following message is printed out from a successful initialization:

...
To join ClusterWare NODES as control planes to this ClusterWare control plane:
scyld-kube -i NODES --join-ha --certificate-key␣
→˓1271738c2ee3cda4dc022a9bef8a3166550a608e80d000cdf0dfbe3defb03776 --cluster n21
...

ò Note

There will also be messages about joining non-ClusterWare systems as workers to this ClusterWare control
plane.

3. Verify the first control plane node is ready and note the --cluster value with INTERNAL-IP. See Checking
Deployment Status. If it is more than 2 hours since the first control plane node was initialized, generate a new
certificate key. See Additional Configuration.

4. Join n22 and n23 as additional control plane nodes to the first control plane node (n21):

scyld-kube -i n[22-23] --join-ha --certificate-key␣
→˓1271738c2ee3cda4dc022a9bef8a3166550a608e80d000cdf0dfbe3defb03776 --cluster n21

5. Verify all control plane nodes are ready. See Checking Deployment Status.

6. Using the messages at the end of step 2 as a guide, join ClusterWare nodes (n[1-4]) as workers to the control
plane node n21:

scyld-kube -i n[1-4] --join --cluster n21

7. Create a Kubernetes worker node image and then boot n[5-10] with the node image as workers to the control
plane node n21:

$ scyld-bootctl -i DefaultBoot clone name=KubeWorkerBoot
$ scyld-imgctl -i DefaultImage clone name=KubeWorkerImage
$ scyld-kube --image KubeWorkerImage --join --cluster n21
$ scyld-bootctl -i KubeWorkerBoot up image=KubeWorkerImage

(continues on next page)

252 Chapter 5. Articles

ICE ClusterWare Documentation, Release 12.4.0

(continued from previous page)

$ scyld-nodectl -i n[5-10] set _boot_config=KubeWorkerBoot
$ scyld-nodectl -i n[5-10] reboot

8. On EACH non-ClusterWare system that you want to join as a worker and where clusterware-kubeadm is installed,
join the local system to the control plane node n21 with explicit --token, --cahash, and --cluster arguments:

scyld-kube --join --token yp6lxa.wcb6g48ud3f2cwng --cahash␣
→˓sha256:413a6267bac67ff749734749dc8b5f60323a68c64bf7fc8e99292dd9b29040b2 --cluster␣
→˓10.154.2.0

5.5.3 Using Multiple Non-ClusterWare Systems as a Control Plane
1. On EACH non-ClusterWare system where clusterware-kubeadm is installed, create High Available (HAProxy

and Keepalived) configure files with kube2 (10.154.3.2) as the first control plane node and kube3 (10.154.3.3)
and kube4 (10.154.3.4) as additional control plane nodes:

scyld-kube --prepare-lb 10.154.4.0 kube2:10.154.3.2,kube3:10.154.3.3,kube4:10.154.3.
→˓4

ò Note

10.154.4.0 is an unused IP within the cluster network. It will be the apiserver virtual IP for these Kubernetes
control planes.

2. Initialize the control plane on kube2:

scyld-kube --init-ha

The following message is printed out from a successful initialization:

...
To join non ClusterWare system as control plane to this non ClusterWare control␣
→˓plane:
scyld-kube --join-ha --token ka8y8y.enwcyfsk4hblayz5 --cahash␣
→˓sha256:413a6267bac67ff749734749dc8b5f60323a68c64bf7fc8e99292dd9b29040b2 --
→˓certificate-key 86ae5340eb592759debd51ab9a03c9f9005a5027e7900d3a2fff687de473e2be -
→˓-cluster 10.154.4.0
...

ò Note

There will also be messages about joining ClusterWare NODES/IMAGE as workers to this non-ClusterWare
control plane.

3. On kube2, verify the first control plane node is ready. See Checking Deployment Status. If it is more than 2 hours
since the first control plane node was initialized, generate a new certificate key. See Additional Configuration.

4. On kube3, create the same High Available (HAProxy and Keepalived) configure files as on kube2 and then join
kube3 as an additional control plane node:

5.5. Using Kubernetes 253

ICE ClusterWare Documentation, Release 12.4.0

$ scyld-kube --prepare-lb 10.154.4.0 kube2:10.154.3.2,kube3:10.154.3.3,kube4:10.154.
→˓3.4
$ scyld-kube --join-ha --token ka8y8y.enwcyfsk4hblayz5 --cahash␣
→˓sha256:413a6267bac67ff749734749dc8b5f60323a68c64bf7fc8e99292dd9b29040b2 --
→˓certificate-key 86ae5340eb592759debd51ab9a03c9f9005a5027e7900d3a2fff687de473e2be -
→˓-cluster 10.154.4.0

5. Repeat step 4 on kube4.

6. Verify all control planes nodes are ready. See Checking Deployment Status.

7. Using the messages at the end of step 2 as a guide, join ClusterWare nodes (n[11-14]) as workers with explicit
--token, --cahash, and --cluster arguments to the control plane node kube2 (10.154.4.0):

scyld-kube -i n[11-14] --join --token ka8y8y.enwcyfsk4hblayz5 --cahash␣
→˓sha256:413a6267bac67ff749734749dc8b5f60323a68c64bf7fc8e99292dd9b29040b2 --cluster␣
→˓10.154.4.0

8. Create a Kubernetes worker node image with explicit --token, --cahash, and --cluster arguments and then
boot n[15-20] with the node image as workers to the control plane node kube2 (10.154.4.0):

$ scyld-bootctl -i DefaultBoot clone name=KubeWorkerBoot2
$ scyld-imgctl -i DefaultImage clone name=KubeWorkerImage2
$ scyld-kube --image KubeWorkerImage2 --join --token ka8y8y.enwcyfsk4hblayz5 --
→˓cahash sha256:413a6267bac67ff749734749dc8b5f60323a68c64bf7fc8e99292dd9b29040b2 --
→˓cluster 10.154.4.0
$ scyld-bootctl -i KubeWorkerBoot2 up image=KubeWorkerImage2
$ scyld-nodectl -i n[15-20] set _boot_config=KubeWorkerBoot2
$ scyld-nodectl -i n[15-20] reboot

9. On EACH non-ClusterWare system that you want to join as a worker and where clusterware-kubeadm is in-
stalled, join the local system to the control plane node kube2 (10.154.4.0) with explicit --token, --cahash,
and --cluster arguments:

scyld-kube --join --token ka8y8y.enwcyfsk4hblayz5 --cahash␣
→˓sha256:413a6267bac67ff749734749dc8b5f60323a68c64bf7fc8e99292dd9b29040b2 --cluster␣
→˓10.154.4.0

5.6 Creating Arbitrary Rocky Images
Creating Images describes how to create images from the latest Rocky repos. This section describes how to create
images from older Rocky repos. These examples use Rocky 9.5 and Rocky 8.5, but other versions will work similarly.

ò Note

To create a CentOS/Rocky 7 image on a RHEL or Rocky 8 head node, you must disable FIPS mode.

s Important

If the Rocky image built is subsequently updated using yum update, then by default that updates packages to the
latest minor release level, not to newer versions at the image's current minor release level. Also, yum install of

254 Chapter 5. Articles

ICE ClusterWare Documentation, Release 12.4.0

additional packages may update dependency packages from their current minor release version level to the latest
minor level. Such actions may result in a mixture of packages from different minor releases, which may have
unintended consequences.

5.6.1 Using Version-Specific ISO File
The first option is to use the ISO for the targeted version of Rocky. The ISO is used to create an ISO-based repo that is
the basis for a distro. scyld-modimg is used to create the final image.

For example, use scyld-clusterctl repos and scyld-clusterctl distroswith the Rocky-9.5-x86_64-dvd.iso
ISO file to create a repo and distro for Rocky version 9.5, then use scyld-modimg to create an image and a boot config.

You can also use scyld-add-boot-config to perform the same result in fewer steps. Execute the following and
accept all the defaults:

scyld-add-boot-config --iso /mnt/isos/Rocky-9.5-x86_64-dvd.iso

This creates a distro and repo both named Rocky-9.5-x86_64-dvd, and an image and boot config both named Rocky-
9.5-x86_64-dvd.

Avoid the manual acceptance of the defaults by specifying desired names and running the command in batch mode:

scyld-add-boot-config --iso /mnt/isos/Rocky-9.5-x86_64-dvd.iso \
--image Rocky-9.5-Image --boot-config Rocky-9.5-Boot

View the result, which shows the default repo and the new repo as well as the default boot config and the new boot
config:

[admin@head]$ scyld-clusterctl distros ls -L
Distros
Rocky
name: Rocky
packaging: rpm
release: 9
repos
Rocky_appstream
Rocky_base

[admin@head]$ scyld-bootctl ls -l
Boot Configurations
Rocky-9.5-Boot
cmdline: enforcing=0
image: Rocky-9.5-Image
initramfs
chksum: a85b01e91c26c52ebf549066c6c5fce544f3c75b
filename: 3684fbadf53f4c8bb8a3dea24ecf778d
mtime: 2025-01-18 16:49:06 UTC (1:14:23 ago)
size: 33.4 MiB (34978448 bytes)

kernel
chksum: 73872862a49ee024bf44c4d796c96bed4d52ee43
filename: 1d6888add971485395d943df191645c4
mtime: 2025-01-18 16:49:07 UTC (1:14:23 ago)
size: 6.4 MiB (6734016 bytes)

last_modified: 2025-01-18 16:49:07 UTC (1:14:23 ago)
(continues on next page)

5.6. Creating Arbitrary Rocky Images 255

ICE ClusterWare Documentation, Release 12.4.0

(continued from previous page)

name: Rocky-9.5-Boot
release: 3.10.0-1062.el7.x86_64

ò Note

Creating images from some older ISOs may produce an error message beginning with ERROR: One or more
repositories in the newly created image are invalid or unreachable. The scyld-modimg tool
automatically retries the image creation, and if there is no subsequent error reported, then you can assume that the
resulting image is useable.

5.6.2 Using Publicly Available Repositories
To create the image from publicly available repositories, embed the specific version in the repo URLs. Note that the
repositories for older versions of Rocky are now in the the /vault/ directory.

For example, to create a Rocky 8.5 image, use the following commands:

scyld-clusterctl repos create name=Rocky85_baseos urls=http://dl.rockylinux.org/vault/
→˓rocky/8.5/BaseOS/$basearch/os/
scyld-clusterctl repos create name=Rocky85_appstream urls=http://dl.rockylinux.org/vault/
→˓rocky/8.5/AppStream/$basearch/os/
scyld-clusterctl distros create name=Rocky85 repos=Rocky85_baseos,Rocky85_appstream

After the distro is created, use scyld-modimg to create the image. Alternatively, run the following command to create
both the image and boot configuration:

scyld-add-boot-config --distro Rocky85

5.7 Creating Arbitrary RHEL Images
The Creating Arbitrary Rocky Images describes how to create and update images using arbitrary Rocky repos. This
section describes how to create arbitrary RHEL images from older releases and register (or re-register) them to Red
Hat. The repo is most commonly built from an ISO file that represents a specific RHEL major.minor version.

For this example we build a RHEL 9.0 image and boot config using the rhel-computenode-9.0-x86_64-dvd.iso ISO file.
Older releases will work similarly.

ò Note

To create a RHEL 7 image on a RHEL or Rocky 8 head node, you must disable FIPS mode.

Use scyld-clusterctl repos and scyld-clusterctl distros to create a repo and distro for this RHEL version
9.0, then use scyld-modimg to create an image and a boot config.

More simply, use scyld-add-boot-config to perform the same result in fewer steps. Execute the following and
accept all the defaults:

scyld-add-boot-config --iso /mnt/isos/rhel-computenode-9.0-x86_64-dvd.iso

This creates a distro and repo both named rhel-server-9.0-x86_64, and an image and boot config both named rhel-
server-9.0-x86_64.

256 Chapter 5. Articles

ICE ClusterWare Documentation, Release 12.4.0

Alternatively, you can avoid the manual acceptance of the defaults by specifying desired names and running the com-
mand in batch mode:

scyld-add-boot-config --iso=/mnt/isos/rhel-server-9.0-x86_64-dvd.iso \
--image RHEL-9.0-Image --boot-config RHEL-9.0-Boot

View the result, which shows the default repo and the new repo, and the default boot config and the new boot config:

[admin@head]$ scyld-clusterctl distros ls -l
Distros
Rocky
name: Rocky
packaging: rpm
release: 9
repos
Rocky_base

rhel-server-9.0-x86_64
name: rhel-server-9.0-x86_64
packaging: rpm
release: none
repos
rhel-server-9.0-x86_64

[admin@head]$ scyld-bootctl ls -l
Boot Configurations
DefaultBoot
cmdline: enforcing=0
image: DefaultImage
initramfs
chksum: a623be752272166f47896d648689789359239ebf
filename: b51e6d31a84a4f069c6a4a484b5b5264
mtime: 2025-01-18 19:20:19 UTC (0:37:22 ago)
size: 33.4 MiB (35046202 bytes)

kernel
chksum: 2b0b0737e80596021ef71da44dbac6b335fcf0e3
filename: db392537a1f6445d8c821d9a89ea5d8c
mtime: 2025-01-18 19:20:19 UTC (0:37:22 ago)
size: 6.5 MiB (6777448 bytes)

last_modified: 2025-01-18 19:20:19 UTC (0:37:22 ago)
name: DefaultBoot
release: 3.10.0-1160.59.1.el7.x86_64

RHEL-9.0-Boot
cmdline: enforcing=0
image: RHEL-9.0-Image
initramfs
chksum: 0d824541ab9bc9452dbec07e8486f443472327f9
filename: 905309b474f54c629ac8befd76150f8b
mtime: 2025-01-18 19:43:39 UTC (0:14:02 ago)
size: 33.4 MiB (35046065 bytes)

kernel
chksum: b5d0b67026d6ae5829d929dcd7b6ba52619de7fb
filename: 222a7267c85849979a8908bdc72277b1

(continues on next page)

5.7. Creating Arbitrary RHEL Images 257

ICE ClusterWare Documentation, Release 12.4.0

(continued from previous page)

mtime: 2022-03-18 19:43:39 UTC (0:14:02 ago)
size: 6.4 MiB (6762800 bytes)

last_modified: 2022-03-18 19:43:39 UTC (0:14:02 ago)
name: RHEL-9.0-Boot
release: 3.10.0-1127.el7.x86_64

s Important

If the cluster administrator wants to enable FIPS, then follow the directions provided by the base distribution
provider. The Red Hat RHEL or Rocky repo must include @core, and any subsequently created compute node
image must contain several additional packages, including dracut-fips. Verify the presence of @core by suc-
cessfully executing yum groupinfo core.

To boot the new image, assign RHEL-9.0-Boot to node n0, and reboot n0:

[admin@head]$ scyld-nodectl -i n0 set _boot_config=RHEL-9.0-Boot
Results
n0
success: True

[admin@head]$ scyld-nodectl -i n0 reboot
Nodes
n0: Soft reboot succeeded

A RHEL compute node can automatically register (or re-register) with Red Hat at boot time by adding the file /
etc/clusterware/rhel-vars.sh to the image. That file must contain two lines that define values for the vari-
ables "RHEL_USER" and "RHEL_PASS". The booting RHEL node executes /opt/scyld/clusterware-node/
scripts-available/up/register_rhel.sh (distributed in the clusterware-node package) which opens /etc/
clusterware/rhel-vars.sh (if that exists) and parses the "RHEL_USER=" username and "RHEL_PASS=" pass-
word, then executes:

subscription-manager register --username <username> --password <password>

On a successful first-time registration, the node transmits the resulting consumerid to its parent head node, which in
turn stores that value into the node's _rhel_consumerid attribute in the ClusterWare database.

If a specific Pool ID is required, then add the attribute _rhel_poolid.

s Important

If the RHEL image thus built is subsequently updated using yum update, then by default that updates packages to
the latest minor release level, not to newer versions at the image's current minor release level. Also, yum install
of additional packages may update dependency packages from their current minor release version level to the latest
minor level. Such actions may result in a mixture of packages from different minor releases, which may have
unintended consequences.

258 Chapter 5. Articles

ICE ClusterWare Documentation, Release 12.4.0

5.8 Creating Ubuntu and Debian Images
The following examples create Ubuntu and Debian images and associated boot configurations using the public Internet-
accessible Ubuntu and Debian repos, both of which contain multiple releases.

5.8.1 UBUNTU
First an example of building an Ubuntu 20.04 LTS (Focal Fossa) image. Specify a local repo, arbitrarily naming it
ubuntu, that serves as a shorthand reference to the public Ubuntu repo:

scyld-clusterctl repos create name=ubuntu urls=http://archive.ubuntu.com/ubuntu/

Next, specify a particular distribution within that Ubuntu repo. For this example we specify focal, which is the Focal
Fossa 20.04 LTS release, and give this local distro the name ubuntu_20.04:

scyld-clusterctl distros create name=ubuntu_20.04 repos=ubuntu release=focal␣
→˓packaging=deb

Now create an image from the distro ubuntu_20.04 and name it UbuntuImg-20.04:

scyld-modimg --create ubuntu_20.04 --set-name UbuntuImg-20.04 --upload

And create a boot configuration named UbuntuBoot-20.04 that provides the necessary files to PXE boot that image:

scyld-add-boot-config --image UbuntuImg-20.04 --boot-config UbuntuBoot-20.04

The image thus created contains basic Ubuntu 20.04 LTS software. You can add software and modify configuration
files in this image as needed, keeping in mind that Ubuntu's package manager expects software distributed as *.deb
files, not *.rpm files.

For example, use --chroot:

scyld-modimg -i UbuntuImg-20.04 --chroot

and manipulate files and packages within the image.

5.8.2 DEBIAN
You can employ similar steps to create a Debian image, in this example creating an image from the stable distro:

scyld-clusterctl repos create name=debian urls=http://deb.debian.org/debian/
scyld-clusterctl distros create name=debian-stable repos=debian release=stable␣
→˓packaging=deb
scyld-modimg --create debian-stable --set-name debian-stable-img --upload
scyld-add-boot-config --image debian-stable-img --boot-config debian-stable-boot

5.9 Converting CentOS 8 to Alternative Distro
CentOS 8 has reached its official End Of Life phase and now exists only in archived form at https://vault.centos.org/. To
access software updates that track RHEL8 to one degree or another, you should convert to an alternative distribution.

Some alternatives choices are:

Red Hat RHEL 8

5.8. Creating Ubuntu and Debian Images 259

https://vault.centos.org/

ICE ClusterWare Documentation, Release 12.4.0

RHEL is the original source base of every CentOS release, so RHEL 8 is an obvious alternative to CentOS 8. Accessing
the RHEL 8 repositories requires a paid subscription. Additionally, some RPMs found in the CentOS repository for a
particular release are only found in the Red Hat EPEL repository. Contact Red Hat for details.

CentOS Stream 8
The CentOS Project recommends transitioning CentOS 8 to CentOS Stream 8. The CentOS Project defines that reposi-
tory as containing RPMs that are in a development phase between a RHEL clone and the somewhat more experimental
Fedora, i.e., as a form of "beta" release candidates for the next RHEL release.

Rocky 8
Penguin Computing currently suggests considering Rocky 8 as a distribution similar to CentOS, i.e., tracking every
new RHEL 8 release within days. See https://rockylinux.org/ for details.

See https://github.com/rocky-linux/rocky-tools/tree/main/migrate2rocky for details about a bash script that performs
the conversion.

Note however that updating CentOS RPMs to Rocky RPMs will likely install updates of various configuration files,
which will leave various *.rpmsave and *.rpmnew files that require the administrator to examine and potentially
merge local changes that were made when running CentOS.

5.10 Using Docker for Head Nodes
A RHEL/CentOS-clone server can use the scyld-install tool to install ICE ClusterWare™ to become a Cluster-
Ware head node. This appendix describes an alternative approach that allows a server to use a ClusterWare Docker
container that Penguin Computing has already built as a basic head node image, thereby avoiding the need for a cluster
administrator to install and configure the ClusterWare system from scratch.

ò Note

The ClusterWare platform also supports containers running on the compute nodes, allowing each node to act as a
Docker host for running containers. See Using Docker for Compute Nodes.

5.10.1 Install the Foundational Packages
The ClusterWare Docker container approach first requires installing the docker and clusterware-tools packages. For the
latter package you need to set up /etc/yum.repos.d/clusterware.repo in order to access the Penguin Computing
repo. Instructions for how to do that can be found at the beginning of the same chapter (Install ICE ClusterWare) that
describes how to perform an initial install of a full ClusterWare cluster.

Once clusterware.repo is in place, then you can install the packages necessary for the Docker container approach:

sudo yum install docker clusterware-tools

The clusterware-tools package contains the various scyld- commands, including /usr/bin/scyld-containerctl,
which is referenced below. Knowledgeable Docker administrators may wish to use the standard Docker tools.

ò Note

The podman container management system can be used in place of docker if desired.

260 Chapter 5. Articles

https://rockylinux.org/
https://github.com/rocky-linux/rocky-tools/tree/main/migrate2rocky

ICE ClusterWare Documentation, Release 12.4.0

5.10.2 Download and Load the ClusterWare Docker Image
First download a copy of a pre-built Docker image onto the server that is appropriate for the head node you wish
to create. For example, visit https://updates.penguincomputing.com/clusterware/12/el8/container/ (with appropriate
authentication) and view the available containers compatible with a RHEL/CentOS 8 base distribution that is already
installed on the Docker host server. Suppose you choose clusterware-12.1.0-g0000 to download. You can validate
the downloaded file using the same general method used to validate a downloaded ISO (see Validating ClusterWare
ISOs).

Load the downloaded image into the Docker image registry:

scyld-containerctl img-load clusterware-12.1.0-g0000

which will show several progress bars such as "Loaded image: localhost/clusterware:12.1.0-g0000". After loading, see
just the ClusterWare image using:

scyld-containerctl img-ls

or see all Docker images using:

docker image list

5.10.3 Start the Container
Start the ClusterWare head node container on the Docker host server:

scyld-containerctl start

which creates a new storage directory for persisting the data (by default named cw_container_storage), then creates
the container itself and starts it executing. You can verify that the container is executing using:

scyld-containerctl status

which will show only clusterware containers. To see all Docker containers:

docker ps

5.10.4 Configure the Container
The container needs to contain at least one admin account. For an admin account already defined on the Docker host,
you can directly reference that admin's ssh key file with @ prepended to the admin's public key file name, e.g.,:

scyld-containerctl add-admin admin1 @/home/admin1/.ssh/id_dsa.pub

For an admin not defined on the Docker host, you will need a copy of the admin's id_dsa.pub file contents. You should
include that <ssh-key> string on the command line enclosed in quotes to ensure that spaces and other characters are
sent appropriately. For example, for admin admin2:

scyld-containerctl add-admin admin2 'ssh-rsa AAA..1A2B3C='

Note that the ssh key should end with an equals (=) sign and an optional email address.

It may be helpful to set the root password of the container to a new, known value -- this would allow access to the
web-UI, for example. Use the root-pass action:

5.10. Using Docker for Head Nodes 261

https://updates.penguincomputing.com/clusterware/12/el8/container/

ICE ClusterWare Documentation, Release 12.4.0

scyld-containerctl root-pass

The system will prompt for a new password, and ask for it a second time to confirm. The root-pass action will also
print out the database password which would be needed for configuring Grafana monitoring (see Grafana Login).

Now configure the clusterID in the container with the customer's cluster authentication token so that it has access to
the ClusterWare repo:

scyld-containerctl cluster-id <AUTH_TOKEN>

Now configure the use of ClusterWare tools using:

[root@rocky4 ~]# scyld-containerctl tool-config

which will attempt to find a "good" IP address for this Docker host to communicate with the private cluster network,
although the tool may be confused if there are multiple network interfaces.

The tool writes results to stdout; for example:

ClusterWare tools will attempt to contact ssh-agent to get the
user's authentication key. It may be worthwhile for users to run:

eval `ssh-agent` ; ssh-add

A potential .scyldcw/settings.ini file is below:

[ClusterWare]
client.base_url = https://10.54.0.123/api/v1
client.authuser = root
client.sslverify = quiet

Validate the proposed settings.ini lines, modify if needed, and write to ~/.scyldcw/settings.ini. This user's
settings.ini file can be sent to each admin that has been added to the container, who can use that file for their own
~/.scyldcw/settings.ini after modifying the client.authuser = <username> line with their own username.

Each user will need to execute ssh-agent on the Docker host server at login to allow the ClusterWare platform to
authenticate that user's access to the scyld-* tools:

eval `ssh-agent` ; ssh-add

With ssh-agent running, an admin user can now execute ClusterWare commands. First try:

scyld-nodectl ls

If that authentication was successful, then because initially there are no nodes configured for the container, the above
command should report ERROR: No nodes found, nothing was done and thus verifies the admin's proper access.

Since the container initially has no images or boot configurations by default, we can create them as with any other
ClusterWare installation by executing:

scyld-add-boot-config --make-defaults

Similarly, the container initially has no defined networks or nodes defined, so those also need to be defined. For example,
create a cluster config file called cluster.conf:

cat <<-EOF >cluster.conf
iprange 192.168.122.100/24

(continues on next page)

262 Chapter 5. Articles

ICE ClusterWare Documentation, Release 12.4.0

(continued from previous page)

node 52:54:00:00:00:01
node 52:54:00:00:00:02
EOF

which defines a cluster network of 192.168.122.100/24 that services two compute nodes on that network with the given
MAC addresses. Now configure the head node with that config file:

scyld-cluster-conf load cluster.conf

You can confirm the configuration with scyld-nodectl ls -l, which should return node names n0 and n1 with IP
addresses in the specified range.

5.10.5 Stopping and Restarting the Container
To stop the ClusterWare container:

scyld-containerctl stop

The output will give the name of the storage directory and image-version information. It will also give an example
command to restart this container without loss of data, e.g., by executing:

scyld-containerctl start cw_container_storage clusterware:12.0.0-g0000

ò Note

The ClusterWare container may take more time to shutdown than Docker usually expects and may show a
time-out warning. This is just a warning. The container will in fact be stopped, which you can confirm with
scyld-containerctl status or docker ps.

If you are using the default storage location cw_container_storage and image version name, then you can restart
the head node without loss of data by using the shorter:

scyld-containerctl start

From an admin account, tools like scyld-nodectl ls should now work, and any nodes that were previously defined
will still be present.

5.10.6 The Container Storage Area
The container storage directory will become populated with copies of several directories from inside the container.
Most of this data will be opaque and should not be tampered with. The logs/ directory, however, might be of use in
helping to debug or triage problems.

5.10.7 Known Issues
Depending on how the container manager is configured, the ClusterWare container may need extra networking privi-
leges. In particular, user-created containers may not be allowed to access network ports below 1024. If syslog shows
messages like:

httpd: Permission denied: AH00072: make_sock: could not bind to address [::]:80

then admins may need to configure the container-host machine to allow users to access lower-numbered ports. One can
insert a new config file into /etc/sysctl.d to permanently lower the starting point for "unprivileged" ports. Since
the ClusterWare platform needs access to DNS/port 53, the following will create the necessary file:

5.10. Using Docker for Head Nodes 263

ICE ClusterWare Documentation, Release 12.4.0

echo net.ipv4.ip_unprivileged_port_start = 53 | sudo tee /etc/sysctl.d/90-unprivileged_port_start.conf

A reboot of the container-host will be needed to load the new sysctl configuration.

264 Chapter 5. Articles

CHAPTER

SIX

API REFERENCE

The ICE ClusterWare™ Application Programming Interface (API) enables cluster management, monitoring, and pro-
visioning using a series of HTTP requests. While this web API is typically accessed by using the provided web portal
and command line tools, users can also create their own customized tools by calling the web API in their own scripts.

Aside from a couple of endpoints related to long-running background jobs, the ClusterWare API is stateless, meaning
there is no need for the client to remember any previous state information.

The API is organized around the major ClusterWare objects:

• Nodes - /nodes

• Attribute Groups - /attribs

• Admins - /admins

• Login/Authentication endpoints

• Boot Configurations - /bootconfigs

• Images - /images

• Networks - /nets

• Hostnames - /hosts

• Dynamic Groups - /dyngroups

• Naming Pools - /namingpools

• Head nodes - /heads, /database

• Software Repositories - /repos

• Software Distributions - /distros

• Git Repositories - /gitrepos

• State Sets - /nodes/waitfor

• Cluster-wide information - /cluster

Each ClusterWare object type has several method endpoints for getting or setting data that can be accessed using an
HTTP call to the correct endpoint. For example, an HTTP GET call to the /nodes endpoint will return a list of all
known nodes.

Some method endpoints also accept a unique identifier (UID) as part of the URL. For example, an HTTP GET call to
/node/<UID> will return details about the node with the matching UID. A UID is a 32-character string of lower-case
letters and digits, such as bf0f61d24ce84064a8c7c7e872332c07 or e54e420c42214101918584e27382e8f5.

265

ICE ClusterWare Documentation, Release 12.4.0

Many method endpoints that accept a UID will also accept other identifiers in place of a UID. For example, calls to
Admins endpoints can use a username in place of the UID and calls to the Nodes endpoints can accept a node name,
MAC address, or IP address in place of the UID.

Data being sent to web API endpoints is expected to be encoded in JSON format. Usually this data will be an JSON
object (hash-table or dictionary), though some endpoints accept a list or string instead.

The HTTP response from the server will usually be a JSON object. When an HTTP request is successful, the response
will have an HTTP status code of 200, the JSON object will contain a "success" entry with a value of true, and any
additional data can be found in the "data" entry. For example:

{ "success": true, "data": "4e75fa48...0f005bd" }

If the HTTP response fails, then a 400-series status code will be returned (e.g. 401 for invalid credentials; 403 for
denied access; 404 for object not found, etc.), the "success" entry will have a value of false, and a "reason" entry
will have a description of why the action failed. For example:

{ “success": false, "reason": "No node found for ID=n123" }

6.1 Authentication
The majority of ICE ClusterWare™ API endpoints require that an authentication token is included in the request. This
authentication token will usually come from a call to the login or token refresh endpoints. There are several
authentication options for logging in:

• Username / Password authentication. This leverages the operating system's login credentials.

• SSH key authentication. This uses a public / private key pair. The private keys must be set inside the ClusterWare
software.

• Local-socket authentication service. This only works if a user is logged in to the head node where the request is
made.

When the login is successful, two JSON Web Tokens (JWTs; see https://jwt.io/) will be returned: an access token and
a refresh token. The refresh token can be presented to the token-refresh endpoint to make a new access token.

ò Note

The ClusterWare command-line tools use the access token when possible and will automatically use the refresh
token when the access token has expired. Admins writing their own tools will have to detect errors due to token
expiration and manually initiate a refresh.

While there are ways to unpack and interpret the data inside a JWT, the tokens can be considered opaque. A client
simply receives a JWT upon login, and then sends that same JWT inside an authorization header on future requests:

Header: “Authorization: Bearer eyJhbGciOiJIUzI1Ni...”

The access token has an embedded expiration time (which is also sent by the ClusterWare platform during the login
process) and after that time, the token will be rejected by the head node. The refresh token has its own expiration time,
usually much longer than the access token. So the expectation is that when the access token expires, the refresh token
will still be valid and can be used to make a new access token.

ò Note

266 Chapter 6. API Reference

https://jwt.io/

ICE ClusterWare Documentation, Release 12.4.0

While the refresh token is ONLY usable for making a new access token, it cannot be used to interact with the other
endpoints.

In a multi-head cluster, every head node may be configured to use different underlying “secrets” that are used when
making new tokens. Thus, after authenticating to one head node, the tokens that are returned may not be usable on
other head nodes. In the rare case that a client needs to interact with multiple head nodes, it should login to each one
separately and ensure that future requests use the correct token with each corresponding head node.

Where authentication asserts that “this user is who they say they are”, the ClusterWare platform uses role-based access
control (RBAC) to limit what specific actions a given user can take. For more information on ClusterWare’s RBAC
roles, see Role-Based Access Controls and Role-Based Access Control System.

ò Note

As with other token-based authentication systems, if anyone intercepts or acquires a copy of a token, they can fully
impersonate the user who created it. Care must be taken to protect the tokens from other users. Consider using OS
or file-system based access control mechanisms.

6.1.1 Username/Password Authentication
The traditional username/password process is provided through a PAM connector. When a login request is made, the
system is queried to see if the given username and password are valid. If they are, the ClusterWare platform will make
a new token and return it to the caller.

The data is sent as a JSON object with "user" and "pass" keys:

curl -X POST https://head1.cluster.local/api/v1/login --data '{"user":"admin1", \
"pass":"password"}'

Note that these example curl commands are interacting with an HTTP endpoint, but they are also available using
HTTPS. Further, the examples may show passwords on the command line, but putting a password on the command
line is not recommended as it may be visible to other users via ps or similar commands.

The returned value will include the access and refresh tokens, as well as expiration values for both:

{"success": true, "data": {"user": "admin1", "token": {"access_token": \
"eyJhbGciOiJIUzI1Ni...", "expires_in": 1200, "refresh_token": \
"eyJhbGciOiJIUzI1Ni...", "refresh_expires_in": 2592000}}}

The expiration times are in seconds from when the server issued the token. For long-running actions or scripts, admins
may want to err on the side of caution and refresh prior to the actual expiration of the access token.

ò Note

While the head nodes synchronize data amongst themselves, the underlying operating systems do not synchronize
unless configured to do so via some other mechanism. The head nodes could have their /etc/passwd and /etc/shadow
files synchronized through scp or sftp, or through an external directory system (LDAP, NIS), but that is outside the
scope of this document.

6.1. Authentication 267

ICE ClusterWare Documentation, Release 12.4.0

6.1.2 Token Refresh
The access token can be used in subsequent requests up until the expiration time. Once it has expired, the refresh token
can be used to acquire a new access token through the token-refresh endpoint:

curl -X GET https://head1.cluster.local/api/v1/newtoken -H "Authorization: \
Bearer eyJhbGciOiJIUzI1Ni..."

Again, note that this should be the refresh token that is sent to this endpoint – sending an access token will result in a
failure.

Upon success, a new set of tokens will be returned:

{"success": true, "data": {"authorized_by": "admin1", "userid": "admin1", "uid": \
"735367a122664db8ae8ba3ec113f1643", "token": {"access_token": \
"eyJhbGciOiJIUzI1Ni...", "expires_in": 1200, "refresh_token": \
"eyJhbGciOiJIUzI1Ni...", "refresh_expires_in": 2592000}}}

If the authentication fails, the "success" field will be false and a "reason" field will contain more information.

ò Note

The default access token duration is 20 minutes; the default refresh token duration is 30 days.

6.1.3 Alternate Authentication Methods
There are two other authentication methods that can be used during login – a one-time password (OTP) sent to a local
socket, and SSH-key authentication. For more information, please contact Penguin Solutions.

Since head nodes are assumed to be “locked down” and protected from end-user access, when a client is running on
the head node, they can send an OTP to a known Unix socket and then re-send that OTP during the login process. The
same POST /login endpoint is used, but with “user” and “secret” keys. If successful, the ClusterWare platform will
return a set of access and refresh tokens.

For information on the SSH-key login process, please contact Penguin Solutions.

6.2 Basic Operations
For most ICE ClusterWare™ objects, standard HTTP actions are supported for manipulating the entries. Using the
Node objects as an example:

• List objects - GET /nodes

• Create new object - POST /nodes

• Get object info - GET /node/<UID>

• Update some info - PATCH /node/<UID>

• Update all info - PUT /node/<UID>

• Delete object - DELETE /node/<UID>

• Metadata - GET /nodes/meta

Endpoints that refer to a whole class of objects are pluralized (end with ‘s’), such as /nodes or /images. Endpoints
that refer to one specific object are singular and include a UID, such as /node/<UID> or /image/<UID>.

268 Chapter 6. API Reference

ICE ClusterWare Documentation, Release 12.4.0

6.2.1 List Objects
Issuing an HTTP GET to an object-class (pluralized) endpoint will return information about all the objects of that class.
Since this endpoint will only return a list of UIDs for the objects, any detailed information will have to be found with
a subsequent call to the GET endpoint.

The return value will be a JSON object with two main fields: success and data. The data field will also be a JSON
object, with the keys being set to object UIDs:

{ “success": true, "data": { "7ad57...73e4a1f4": {... first object’s data ...}, \
"ab89c...2501817": {... second object’s data ...}}}

If the request is unsuccessful, then a reason field will be returned with more information on why the request failed.

{ "success": false, "reason": "No node found for ID=n123" }

6.2.2 Create New Object
To create a new object, a POST is issued to the object-class (pluralized) endpoint with the relevant data. Most object
types accept a name and "description" field, but most fields are object-specific (see below for details).

To create a new compute-node object:

curl -X POST https://head1.cluster.local/api/v1/nodes --data \
'{"mac":"11:22:33:44:55:66"}' -H "Authorization: Bearer eyJhbGciOiJIUzI1Ni..."

On success, the ClusterWare platform will return a UID for the newly create node:

{ “success": true, "data": "4e75fa48...0f005bd" }

Upon failure, the returned data will include a "reason" field with more information on why the request failed:

{ “success": false, "reason": "Node with MAC=52:54:00:00:00:03 already exists." }

6.2.3 Get Object Info
Issuing an HTTP GET to an endpoint will return information about a specific object. Depending on the object type, the
UID may be the true UID for the object, the name of the object, or some other object-specific unique identifier such as
MAC address (for nodes).

The return value will be a JSON object with two main fields, success and data. The data field will also be a JSON object
with a single key-value pair. The key will usually be the object’s UID, but if the request was made with the object’s
name, then the key will also be the name.

{ "success": true, "data": { "7ad57...73e4a1f4": { ... object data ... }}}

By default, GET operations will return all of the object’s information: the UID, the name, and all object-specific fields
and sub-fields. The client is expected to provide any filtering of data that might be needed.

If the request is unsuccessful, then a reason field will be returned with more information on why the request failed.

{ "success": false, "reason": "No node found for ID=n123" }

6.2. Basic Operations 269

ICE ClusterWare Documentation, Release 12.4.0

6.2.4 Update Object
There are two related update methods: PATCH and PUT. When using the PATCH method, the request is assumed to
modify only those fields that are sent in the request – any other fields in the object will be left as-is. The PUT method
assumes that the entire object should be overwritten by the new data – any fields in the request will be overwritten, and
any fields not in the request will be removed or set to default values. Not all object-types allow for PUT operations, and
note that a bad PUT call could irreversibly damage the object if some fields are wiped out.

To update the "description" field of a node with PATCH:

curl -X PATCH https://head1.cluster.local/api/v1/node/UID --data \
'{"description":"this is a new description"}' -H "Authorization: Bearer \
eyJhbGciOiJIUzI1Ni..."

The return value will simply indicate success or failure:

{"success": true}

In this example, success would indicate that ONLY the "description" field has been modified.

On failure, a "reason" field will give more information on why the request failed:

{"success": false, "reason": "Unhandled parameter(s): ..."}

6.2.5 Delete Object
The DELETE method will permanently remove an object from the ClusterWare system – there is no way to recover the
object’s data once it has been deleted.

To delete an Image from the system:

curl -X DELETE https://head1.cluster.local/api/v1/image/DefaultImage -H \
"Authorization: Bearer eyJhbGciOiJIUzI1Ni..."

The return value will simply indicate success or failure:

{"success": true}

On failure, a “reason” field will give more information on why the request failed:

{"success": false, "reason": "No image found for ID=DefaultImage"}

6.2.6 Metadata Information
All objects have a metadata endpoint off of their object-class (pluralized) endpoint (for example, /nodes/meta). This
endpoint will return more detailed information about the fields available in that object-class.

Note that this is a public endpoint and does not need any authentication token to be accessed.

curl -X GET https://head1.cluster.local/api/v1/nodes/meta

It will return a JSON object that includes a list of fields. Each field in the list will include a path field (the chain of
keys to get to that field), summary, source (where the data comes from), and a format (what kind of data it is).

270 Chapter 6. API Reference

ICE ClusterWare Documentation, Release 12.4.0

6.3 Admin Objects
Admin objects are used to give explicitly specified users access to ICE ClusterWare™ functionality. Regular HPC users
do not need to have Admin objects created for them - this is solely for those who will do administrative or managerial
tasks on the cluster.

To create an Admin, the only required data is a name. This must match the username of the user on the underlying
operating system. If additional user-data is required, like a full name or department affiliation, it should be stored inside
the "description" field.

When issuing requests, the UID field in the URL can be either the actual UID of the object or the name of the object as
given in the "name" field. Thus, once a user, user1, has been created, it can be referenced through /admin/user1 or
/admin/<UID>.

6.3.1 Data Fields
Admin objects have several fields:

name
Required: The name of the user on the underlying system description
Optional: A text string with descriptive information

roles
Optional: A comma-separated list of ClusterWare roles; while optional, if a user

does not have any roles assigned, they will not be able to take any
actions; note that PATCH operations on the “roles” field will
overwrite the entire field, there is no way to append or extend the
list of roles

keys
Optional: A list of one or more ssh keys

gui_settings
Optional: Used internally by the ClusterWare GUI; it should not be modified

by end-users

6.3.2 Additional Endpoints
Several endpoints can be used to modify the gui_settings field. Where the standard PATCH actions can update just
the gui_settings field, it must update the entire object; these actions allow finer-grained updating of individual keys
in that object. Note that this field is used internally by the ClusterWare GUI and admins should not need to modify it
directly.

GET /admin/<UID>/gui_settings

PATCH /admin/<UID>/gui_settings

DELETE /admin/<UID>/gui_settings

Several endpoints can be used to update or delete the list of SSH keys that have been stored for the admin.

POST /admin/<UID>/keys

PUT /admin/<UID>/keys
(continues on next page)

6.3. Admin Objects 271

ICE ClusterWare Documentation, Release 12.4.0

(continued from previous page)

DELETE /admin/<UID>/keys

Similar to the token-refresh process, there is an endpoint that allows an admin to make a new token for use by other
tools or automated processes; optional fields can be included in the request:

POST /admin/<UID>/newtoken timeout: integer; duration for the newly made token

6.3.3 Example
First, create a new admin:

curl -X POST https://head1.cluster.local/api/v1/admins --data '{"name":"admin2"}' \
-H "Authorization: Bearer eyJhbGciOiJIUzI1Ni..."

{"success": true, "data": "d763705495c3423083ae35f0850da018"}

Get the details on that Admin record:

curl -X GET https://head1.cluster.local/api/v1/admin/d763705495c3423083ae35f0850da018 \
-H "Authorization: Bearer eyJhbGciOiJIUzI1Ni..."

{"success": true, "data": {"name": "admin2", "roles": ["role.authuser", \
"role.fulladmin"], "last_modified": 1721850600.3619504, "last_modified_on": \
"head23.cluster.local", "last_modified_by": "admin1", "uid": \
"d763705495c3423083ae35f0850da018"}}

Update the record to include a description (switching to “admin2” in the URL):

curl -X PATCH https://head1.cluster.local/api/v1/admin/admin2 --data \
'{"description":"John Doe, HPC admin"}' -H "Authorization: Bearer \
eyJhbGciOiJIUzI1Ni..."

{"success": true}

Update the list of roles to be just “role.authuser”:

curl -X PATCH https://head1.cluster.local/api/v1/admin/admin2 --data \
'{"roles":["role.authuser"]}' -H "Authorization: Bearer eyJhbGciOiJIUzI1Ni..."

{"success": true}

While the PATCH request only updates that one field, leaving other fields as-is, the update to that field will overwrite
the old data. There is no way to append or add to the list of roles.

Verify the new data:

curl -X GET https://head1.cluster.local/api/v1/admin/admin2 -H \
"Authorization: Bearer eyJhbGciOiJIUzI1Ni...”

{"success": true, "data": {"name": "admin2", "roles": ["role.authuser"], \
"last_modified": 1721851033.3245502, "last_modified_on": "head23.cluster.local", \
"last_modified_by": "admin1", "description": "John Doe, HPC admin", "uid": \
"d763705495c3423083ae35f0850da018"}}

Finally, delete the account:

272 Chapter 6. API Reference

ICE ClusterWare Documentation, Release 12.4.0

curl -X DELETE https://head1.cluster.local/api/v1/admin/admin2 -H \
"Authorization: Bearer eyJhbGciOiJIUzI1Ni..."

{"success": true}

6.4 Node Objects
ICE ClusterWare™ node objects represent the computational nodes and other controllable entities inside the cluster
(switches, PDUs, etc.).

When issuing requests, the UID field in the URL can be either the actual UID of the object, the name of the object as
given in the "name" field, the MAC address, or the IP address. Thus, once a user, user1, has been created, it can be
referenced through /admin/user1 or /admin/<UID>.

6.4.1 Data Fields
Node objects can have several fields:

name
Assigned by ClusterWare; the name is computed from the naming pool pattern and
the node’s index (which is also computed based on that pool’s membership)

description
Optional: A text string with descriptive information

type
Optional: Defaults to ‘compute’, can be one of ('unknown','compute','head',

'simulated')

mac
Required: Every node must have a MAC address

attributes
Optional: A set of key-value pairs that are assigned to the node and may be used

when configuring the node at boot-time

groups
Optional: An ordered list of Attribute Groups that this node belongs to;

attributes from each group will be applied (overwritten) based on the
order of the groups

naming_pool
Optional: A naming pool may be assigned and used to calculate the

name, index, and IP address of the node

index
Assigned by ClusterWare; the index (integer) is computed by ClusterWare based on
the naming pool

ip
Assigned by ClusterWare; the IP address is computed by ClusterWare based on the
naming pool

(continues on next page)

6.4. Node Objects 273

ICE ClusterWare Documentation, Release 12.4.0

(continued from previous page)

power_uri
Optional: The URI of the node’s BMC or IPMI controller; the power_uri can be a

template with bracketed fields that are substituted with the node’s
attribute, status, or hardware values (see examples below)

redfish_uri
Optional

6.4.2 Additional Endpoints
Several endpoints provide finer-grained access to the list of Attribute Groups that the node belongs to. For example,
POST /node/<UID>/groups allows appending one or more groups to the current list. To completely replace the list
of groups, use the PATCH /node/<UID> action with the groups key.

GET /node/<UID>/groups
Returns a list of Attribute Groups (UIDs) that the node belongs to

POST /node/<UID>/groups
Accepts one key or a list of keys representing Attribute Groups that will be
appended to the current list

DELETE /node/<UID>/groups
Accepts one key or a list of keys representing Attribute Groups that will be
removed from the current list of Attribute Groups

Several endpoints provide finer-grained access to the list of attributes assigned to this specific node. Issuing a POST
/node/<UID>/attributes action will append one or more groups to the current list. To completely replace the
attributes, use the PATCH /node/<UID> action with the attributes key. Note that nodes will inherit attributes from
all groups that they belong to, and will then overwrite them with any node-specific attributes.

GET /node/<UID>/attributes
Returns a JSON object for all of the attributes (key-value pairs) for this node;
these may have assigned specifically to this node or may have been inherited from
any of the Attribute Groups that it belongs to

PUT /node/<UID>/attributes
Replaces the current set of node-specific attributes with the sent data; note
that if a key is removed from the current set, it may still be inherited from a
joined Attribute Group

PATCH /node/<UID>/attributes
Updates the current set of node-specific attributes with the sent data; these
values will take precedence over any joined Attribute Groups

DELETE /node/<UID>/attributes
Accepts one key or a list of keys to be removed from the node-specific attributes;
note that if an attribute is set by an Attribute Group, it will still be present
in the node’s overall list of attributes (until it is removed from that Attribute
Group or the node leaves that group)

Several endpoints are designed for power control functionality. The power_uri field is needed for deeper power control
functions. For example, a power-off action will attempt to execute a graceful shutdown, but if that fails it will fallback

274 Chapter 6. API Reference

ICE ClusterWare Documentation, Release 12.4.0

to an IPMI or BMC power-off.

GET /node/<UID>/power_uri
Returns a JSON object with “parsed” and “unparsed” keys; the “unparsed” key
contains a single URI that can be used to connect to the power control unit; the
“parsed” key contains an object with fields representing the server, path, etc.
that have been parsed from the URI

GET /node/<UID>/power_state
Returns the power state of the node: on, off, unknown

PUT /node/<UID>/power_state
Accepts an object with “state” and “force” fields (all optional); “state” is one
of: power on, power off; “force” is True or False. There is an advanced option,
“steps”, which allows for more control over the sequence of power-control attempts
(for example, hard versus soft power-off) – contact Penguin Solutions for more
information.

Several endpoints are used for the node status and hardware reporting system. Note that this is separate from the
ClusterWare Monitoring and Alerting system; this data is kept inside the ClusterWare database and can be used in
various templates and node-selectors. The specific values to be found in status and hardware can be configured using
a plugin system. More information on monitoring and the plugin system can be found in the ClusterWare Admin and
Reference Guides.

GET /node/<UID>/status
Returns a JSON object with the node’s status information – this can be a sizeable
set of data (several KB); with default plugins, status will include things like
load average (load_avg) and memory usage (ram_free) as well as a list of the
loaded packages and modules and many more.

POST /node/putstatus
Accepts a JSON object with a “uid” field (required) and “status” and/or “hardware”
keys; the “status” or “hardware” keys are JSON objects containing the actual data.
This endpoint is intended to be used by ClusterWare tools to update node status
information.

POST /node/putattribs
Accepts a JSON object with a “uid” field (required) and a set of key-value pairs;
the key-value pairs will be added to the node’s current attributes. This endpoint
is intended to be used by ClusterWare tools to update node attribute information.

Related to the above, the following two endpoints are used by the compute nodes to update information on the Clus-
terWare head nodes. These endpoints do not use token-based authentication, but instead look at the IP-address of the
incoming connection to determine which node is being updated.

³ Caution

Improper use of these endpoints could corrupt the ClusterWare node information, which could lead to improper
functioning of Dynamic Groups, node selectors, and the Publish-Subscribe system. Contact Penguin Solutions for
more information.

PUT /node/putstatus
(continues on next page)

6.4. Node Objects 275

ICE ClusterWare Documentation, Release 12.4.0

(continued from previous page)

Accepts a JSON object with “status” and/or “hardware” keys, each of which is a
JSON object containing the actual data; unlike the POST version of this endpoint,
there is no “uid” key needed with the PUT operation

PUT /node/putattribs
Accepts a JSON object with key-value pairs; these key-value pairs will be added
to the node’s attributes; unlike the POST version of this endpoint, there is no
“uid” key needed with the PUT operation

To interact with the nodes, including running commands on them, several endpoints can be used:

PUT /node/<UID>/exec
Accepts a JSON object with “cmd” (required) and an optional “stdin” key; if
“stdin” is sent, it will be used as the standard input for an interactive command;
the output will be an octet-stream with the output from the command. Note that
this output format is different from other ClusterWare commands – there are no
“success” or “data” keys, just the raw data from the command.

6.4.3 Example
Create a new node:

curl -X POST https://head1.cluster.local/api/v1/nodes --data \
'{"mac":"11:22:33:44:55:66"}' -H "Authorization: Bearer eyJhbGciOiJIUzI1Ni..."

{"success": true, "data": "341b9947f6e644b78f6d88f5d7f898f4"}

Verify the node’s data using the returned UID:

curl -X GET https://head1.cluster.local/api/v1/node/341b9947f6e644b78f6d88f5d7f898f4 \
-H "Authorization: Bearer eyJhbGciOiJIUzI1Ni..."

{"success": true, "data": {"mac": "11:22:33:44:55:66", "attributes": \
{"_boot_config": "DefaultBoot"}, "index": 3, "ip": "192.168.122.103", \
"type": "compute", "last_modified": 1721997178.5100713, "last_modified_on": \
"head23.cluster.local", "last_modified_by": "admin1", "uid": \
"341b9947f6e644b78f6d88f5d7f898f4", "groups": [], "hardware": {}, \
"power_uri": null, "name": "n3", "hostname": "n3", "domain": "cluster.local"}}

Since Nodes can be referenced by name or MAC address, the same information can be found using:

curl -X GET https://head1.cluster.local/api/v1/node/11:22:33:44:55:66 -H \
"Authorization: Bearer eyJhbGciOiJIUzI1Ni..."

And now that the node name is known, the same information can be found with:

curl -X GET https://head1.cluster.local/api/v1/node/n3 -H "Authorization: Bearer \
eyJhbGciOiJIUzI1Ni..."

Set attributes on the node itself (not through an Attribute Group):

curl -X PATCH https://head1.cluster.local/api/v1/node/n3/attributes --data \
'{"ipmi_user":"service", "ipmi_pass":"servicepass"}' -H "Authorization: \
Bearer eyJhbGciOiJIUzI1Ni..."

{"success": true}

276 Chapter 6. API Reference

ICE ClusterWare Documentation, Release 12.4.0

Verify the new data, grabbing just the attributes (not the whole node record):

curl -X GET https://head1.cluster.local/api/v1/node/n3/attributes -H \
"Authorization: Bearer eyJhbGciOiJIUzI1Ni..."

{"success": true, "data": {"_boot_config": "DefaultBoot","ipmi_user": "service", \
"ipmi_pass": "servicepass"}}

Setting the power_uri using the attributes in the template

curl -X PATCH https://head1.cluster.local/api/v1/node/n3 --data \
'{"power_uri":"ipmi://<ipmi_user>:<ipmi_pass>@10.10.1.3/ipmi"}' \
-H "Authorization: Bearer eyJhbGciOiJIUzI1Ni..."

{"success": true}

Verify the power_uri and its substitutions

curl -X GET https://head1.cluster.local/api/v1/node/n3/power_uri -H \
"Authorization: Bearer eyJhbGciOiJIUzI1Ni..."

{"success": true, "data": {"unparsed": "ipmi://service:servicepass@10.10.1.3/ipmi", \
"parsed": {"scheme": "ipmi", "schemes": "", "server": "10.10.1.3", "path": \
"ipmi", "server_username": "service:servicepass", "username": null, \
"password": null, "host": "ipmi"}}}

Notice that the text strings “<ipmi_user>” and “<ipmi_password>” have been substituted for the values from the node’s
attributes. To get the un-substituted value for the power_uri, simply use the GET /node/<UID> endpoint.

To determine the power state of the node:

curl -X GET https://head1.cluster.local/api/v1/node/n3/power_state -H \
"Authorization: Bearer eyJhbGciOiJIUzI1Ni..."

{"success": true, "data": "on"}

Note that if the node is unreachable via its primary or management network, it may take a while for the system to
determine that the node is down just due to standard network timeouts.

To power off the node:

curl -X PUT https://head1.cluster.local/api/v1/node/n3/power_state --data \
'{"state":"power off"}' -H "Authorization: Bearer eyJhbGciOiJIUzI1Ni..."

{"success": true}

6.5 Attribute-Group Objects
An Attribute Group object represents a set of attributes that will be attached to a node based on its membership in the
group. A node can be a member of several groups, arranged in a hierarchical list. For example, a node that is a member
of group1 and group2 will inherit group1’s attributes, which may then be overwritten by group2’s attributes.

When issuing requests, the UID field in the URL can be either the actual UID of the object or the name of the object as
given in the “name” field.

6.5.1 Data Fields
The Attribute Group fields are:

6.5. Attribute-Group Objects 277

ICE ClusterWare Documentation, Release 12.4.0

name
Required: The name for the group

description
Optional: A text string with descriptive information

attributes
Optional: A JSON-object containing key-value pairs of attributes

While the attributes field accepts a generic JSON object, it can only reference one level into that key-value store.

6.5.2 Additional Endpoints
Several endpoints can be used to directly manipulate the attribute key-value store instead of going through the Attribute
object first. The PATCH /attribs/<UID> command allows for overwriting the entire attributes field, but cannot
be used to add or append attributes one at a time. The PATCH /attribs/<UID>/attributes endpoint allows for
that kind of direct update.

GET /attrib/<UID>/attributes
Returns a JSON object containing the key-value pairs

PUT /attrib/<UID>/attributes
Replaces the current set of key-value pairs with the sent data; any keys not in
the sent data will be removed from the Attribute Group

PATCH /attrib/<UID>/attributes
Updates the current set of key-value pairs with the sent data; only the keys that
are sent will be modified in the Attribute Group’s data; any other keys will be
left as-is

DELETE /attrib/<UID>/attributes
Accepts one key or a list of keys to be removed from the Attribute Group’s data;
note that a node can still show that attribute key as present if a node-specific
attribute has been set, or if the node is joined to another Attribute Group where
it is set

6.5.3 Example
Create a new Attribute Group:

curl -X POST https://head1.cluster.local/api/v1/attribs --data '{"name":"MyAttribs"}' \
-H "Authorization: Bearer eyJhbGciOiJIUzI1Ni..."

{"success": true, "data": "5997e993e0bb49568bef18536614b733"}

Read the basic information:

curl -X GET https://head1.cluster.local/api/v1/attrib/MyAttribs -H \
"Authorization: Bearer eyJhbGciOiJIUzI1Ni..."

{"success": true, "data": {"name": "MyAttribs", "last_modified": 1721852251.1698143, \
"last_modified_on": "head23.cluster.local", "last_modified_by": "admin1", \
"uid": "5997e993e0bb49568bef18536614b733", "attributes": {}}}

Update the attributes key-value store through the main record:

278 Chapter 6. API Reference

ICE ClusterWare Documentation, Release 12.4.0

curl -X PATCH https://head1.cluster.local/api/v1/attrib/MyAttribs --data \
'{"attributes":{"foo":"bar"}}' -H "Authorization: Bearer eyJhbGciOiJIUzI1Ni..."

{"success": true}

Verify that the update worked:

curl -X GET https://head1.cluster.local/api/v1/attrib/MyAttribs -H \
"Authorization: Bearer eyJhbGciOiJIUzI1Ni..."

{"success": true, "data": {"name": "MyAttribs", "last_modified": 1721852433.4113355, \
"last_modified_on": "head23.cluster.local", "last_modified_by": "admin1", \
"attributes": {"foo": "bar"}, "uid": "5997e993e0bb49568bef18536614b733"}}

To get just the attributes and not the whole record:

curl -X GET https://head1.cluster.local/api/v1/attrib/MyAttribs/attributes -H \
"Authorization: Bearer eyJhbGciOiJIUzI1Ni..."

{"success": true, "data": {"foo": "bar"}}

Directly manipulate the attributes key-value store to add new data:

curl -X PATCH https://head1.cluster.local/api/v1/attrib/MyAttribs/attributes --data \
'{"abc":"def"}' -H "Authorization: Bearer eyJhbGciOiJIUzI1Ni..."

{"success": true}

Verify the new data:

curl -X GET https://head1.cluster.local/api/v1/attrib/MyAttribs/attributes -H \
"Authorization: Bearer eyJhbGciOiJIUzI1Ni..."

{"success": true, "data": {"foo": "bar", "abc": "def", "last_modified": \
1721852648.6145608, "last_modified_on": "533a8c21fd5642c38138214d7ad783ae", \
"last_modified_by": "admin1"}}

Directly delete one key out of the key-value store (send a list of keys to delete):

curl -X DELETE https://head1.cluster.local/api/v1/attrib/MyAttribs/attributes --data \
'["abc"]' -H "Authorization: Bearer eyJhbGciOiJIUzI1Ni..."

{"success": true}

And verify that the key is gone:

curl -X GET https://head1.cluster.local/api/v1/attrib/MyAttribs/attributes -H \
"Authorization: Bearer eyJhbGciOiJIUzI1Ni..."

{"success": true, "data": {"foo": "bar", "last_modified": 1721852648.6145608, \
last_modified_on": "533a8c21fd5642c38138214d7ad783ae", "last_modified_by": \
"admin1"}}

To delete the object entirely:

curl -X DELETE https://head1.cluster.local/api/v1/attrib/MyAttribs -H \
"Authorization: Bearer eyJhbGciOiJIUzI1Ni..."

{"success": true}

6.5. Attribute-Group Objects 279

ICE ClusterWare Documentation, Release 12.4.0

6.6 Boot Config Objects
A Boot Config object represents a set of information used to boot up a node from power-on to a running OS image on
the node. It may include specific command-line parameters for the booting node, a “boot style” (for example, ram-based
image or disked image), kickstart files, etc.

When issuing requests, the UID field in the URL can be either the actual UID of the object or the name of the object as
given in the “name” field.

6.6.1 Data Fields
The Attribute Group fields are:

name
Required: The name for the Boot Config

kernel
Required: This is the kernel (file) being used by the Boot Config; note that since
this requires a large file to be uploaded, the standard POST/PATCH endpoints will
not work to update the kernel - additional endpoints are provided for handling
these files

initramfs
Required: This is the initramfs (file) being used during the early boot phases;
note that since this requires a large file to be uploaded, the standard POST/PATCH
endpoints will not work to update the initramfs - additional endpoints are provided
for handling these filesdescription

Optional: A text string with descriptive information

frozen
Optional: A True/False indicator that allows admins to block changes to the boot

config; note that is intended as a protection against accidents, not
against malicious attacks, since one can simply set frozen=False and
then make changes.

cmdline
Optional: Command-line to be used when booting the operating system; this may

include options for SELinux enforcement or power-control

image
Optional: A UID or name for a ClusterWare Image object (see below); note that

ClusterWare stores this as a UID, but will accept a UID or name when
creating or updating the Boot Config

boot_style
Optional: A string representation of the type of boot-up process being used, one

of: ('rwram','roram','iscsi','next','disked','sanboot','live'); the
default is “rwram” and indicates a node that will be booted into a
ram-based image that readable and writable

repo
Optional

(continues on next page)

280 Chapter 6. API Reference

ICE ClusterWare Documentation, Release 12.4.0

(continued from previous page)

kickstart
Optional: Indicates the kickstart file to be used for disk-based installations

that are using Kickstart; this should be a file that has been copied
or created in the /opt/scyld/clusterware/kickstarts directory.

6.6.2 Additional Endpoints
Additional object-class endpoints are available:

GET /bootconfigs/errors
Will check all Boot Config entries that they have valid data, that any referenced
images or files are present, etc.; returns a JSON object with a “success” field;
if an error occurs, a “reason” field will give more information on why it failed

GET /bootconfigs/mkiso
Accepts a JSON object with “uid” and “image” keys, and will create and download a
bootable ISO image. This is an advanced feature, please contact Penguin Solutions
for more information.

As mentioned earlier, the kernel and initramfs may be large files and thus must be uploaded separately – they cannot
be “updated” with the standard POST/PATCH actions. To interact with these files, use the following endpoints:

GET /bootconfig/<UID>/kernel
Returns a file containing the kernel being used by this Boot Config. Note that
the output format is different from other ClusterWare commands – there are no
“success” or “data” keys, just the binary data of the file being requested.

PUT /bootconfig/<UID>/kernel
Replaces the current kernel file with the uploaded file

DELETE /bootconfig/<UID>/kernel
Deletes the kernel file associated with this Boot Config; in multi-head
configurations, the file will be deleted from all heads automatically

GET /bootconfig/<UID>/initramfs
Returns a file containing the initramfs being used by this Boot Config. Note that
the output format is different from other ClusterWare commands – there are no
“success” or “data” keys, just the binary data of the file being requested

PUT /bootconfig/<UID>/initramfs
Replaces the current initramfs file with the uploaded file

DELETE /bootconfig/<UID>/initramfs
Deletes the initramfs file associated with this Boot Config; in multi-head
configurations, the file will be deleted from all head nodes automatically

For kickstart-based deployments, the kickstart file can be a template that uses “<variable>” syntax to substitute values
from the node. To retrieve the parsed and substituted kickstart file, use the following endpoint. Unlike kernel and
initramfs files, kickstart files are NOT automatically synchronized across head nodes – admins must manually copy the
file from one head node to the others.

GET /bootconfig/<UID>/kickstart
(continues on next page)

6.6. Boot Config Objects 281

ICE ClusterWare Documentation, Release 12.4.0

(continued from previous page)

Returns the parsed and substituted kickstart file; the output format is
different from other ClusterWare commands – there are no “success” or “data”
keys, just the (text) data of the file being requested.

Since Boot Configs are critical to the operation of the cluster, an endpoint can be used to check that the required data
is available and valid. For example, to check that the image file being used is actually present:

GET /bootconfig/<UID>/errors
Checks that entries in the boot config are valid and return a JSON object
with a “success” field; if an error occurs, a “reason” field will give more
information on why it failed

An endpoint is provided to export a Boot Config for backup or sharing:

GET /bootconfig/<UID>/export
This is an advanced feature, please contact Penguin Solutions for more
information

6.6.3 Example
Create a new Boot Config, using an existing DefaultImage as the base image:

curl -X POST https://head1.cluster.local/api/v1/bootconfigs --data \
'{"name":"NewBoot","image":"DefaultImage"}' -H \
"Authorization: Bearer eyJhbGciOiJIUzI1Ni..."

{"success": true, "data": "ed31013d670745139681c46cf657ed40"}

Note that the image can be referenced by UID or, as shown here, by name. Verify the data:

curl -X GET https://head1.cluster.local/api/v1/bootconfig/NewBoot -H \
"Authorization: Bearer eyJhbGciOiJIUzI1Ni..."

{"success": true, "data": {"name": "NewBoot", "image": "DefaultImage", \
"last_modified": \1721921837.5399132, "last_modified_on": "head23.cluster.local", \
"last_modified_by": "admin1", "uid": "ed31013d670745139681c46cf657ed40"}}

Set it to be "frozen" so that future changes cannot be made:

curl -X PATCH https://head1.cluster.local/api/v1/bootconfig/NewBoot --data \
'{"frozen":true}' -H "Authorization: Bearer eyJhbGciOiJIUzI1Ni..."

{"success": true}

Now that it is frozen, attempt to modify the "description" field:

curl -X PATCH https://head1.cluster.local/api/v1/bootconfig/NewBoot --data
'{"description":"new description"}' -H "Authorization: Bearer eyJhbGciOiJIUzI1Ni..."

{"success": false, "reason": "Cannot modify frozen boot configuration."}

This Boot Config does not yet have a kernel or initramfs and thus would not be able to actually boot any nodes yet.
Using the existing DefaultBoot (created during installation), download its kernel and initramfs:

curl -X GET https://head1.cluster.local/api/v1/bootconfig/DefaultBoot/kernel -o \
defaultboot_kernel -H "Authorization: Bearer eyJhbGciOiJIUzI1Ni..."

(continues on next page)

282 Chapter 6. API Reference

ICE ClusterWare Documentation, Release 12.4.0

(continued from previous page)

curl -X GET https://head1.cluster.local/api/v1/bootconfig/DefaultBoot/initramfs -o \
defaultboot_initramfs -H "Authorization: Bearer eyJhbGciOiJIUzI1Ni..."

6.7 Image Objects
An Image object represents a file system that will be deployed onto a compute node. It is not intended to have absolutely
all software that an end-user might want, but rather, a somewhat minimal set of drivers, configuration files, tools, and
middleware to bring up the node. Network-mounted file systems may be used to provide additional software and
libraries for end-users.

When issuing requests, the UID field in the URL can be either the actual UID of the object or the name of the object as
given in the "name" field.

6.7.1 Data Fields
The Attribute Group fields are:

name
Required: The name for the image

content
Required: This is the content of the file system that will be used in this Image;

since this requires a large file to be uploaded, the standard
POST/PATCH endpoints will not work to update the content - additional
endpoints are provided for handling it below

description
Optional: A text string with descriptive information

frozen
Optional: A True/False indicator that allows admins to block changes to the boot

config; this is intended as a protection against accidents, not
against malicious attacks, since one can simply set frozen=False and
then make changes.

parent
Optional: A UID or name of a “parent” Image object that the current object was

derived from; this field is for informational purposes only and is not
used during any actions (for example, changes to a parent Image are not
propagated into its children); ClusterWare stores this as a
UID, but will accept a UID or name when creating or updating the Image

distro
Optional: A UID of a distro (a Software Distribution object)

6.7.2 Additional Endpoints
As mentioned earlier, the content of an Image is a large file and thus must be uploaded separately – it cannot be
“updated” with the standard POST/PATCH actions. To interact with the content file, use the following endpoints:

GET /image/<UID>/content
Returns a file containing the file system image being used by this Image object.

(continues on next page)

6.7. Image Objects 283

ICE ClusterWare Documentation, Release 12.4.0

(continued from previous page)

The output format is different from other ClusterWare commands – there
are no “success” or “data” keys, just the binary data of the file being requested

PUT /image/<UID>/content
Replaces the current content file with the uploaded file

DELETE /image/<UID>/content
Deletes the content file associated with this Image; in multi-head configurations,
the file will be deleted from all heads automatically

GET /image/<UID>/content/stat
Returns a JSON object containing statistics on the image: the file’s size (“size”)
and last modification time (“mtime”)

GET /image/<UID>/content/info
Returns a JSON object containing more detailed statistics on the image: the file’s
size (“size”), last modification time (“mtime”), checksum ("chksum"), a reference
count (“refcnt”), and the file format (“fmt”, currently “cwsquash”)

There is one additional endpoint that is used when capturing an image from a running compute node. This is an
advanced feature; please contact Penguin Solutions for more information.

GET /image/{uid}/capture
Accepts a JSON object with “uid” key (required), and one or more optional keys:
“exclude”, “credentials”, “compress”.

6.7.3 Example
Create an empty image:

curl -X POST https://head1.cluster.local/api/v1/images --data '{"name":"NewImage"}' \
-H "Authorization: Bearer eyJhbGciOiJIUzI1Ni..."

{"success": true, "data": "d16d9eb8786c408ba32780ee6b722a50"}

Look at an existing Image (DefaultImage will be created at installation):

curl -X GET https://head1.cluster.local/api/v1/image/DefaultImage -H \
"Authorization: Bearer eyJhbGciOiJIUzI1Ni..."

{"success": true, "data": {"name": "DefaultImage", "distro": "CentOS", "parent": null, \
"description": "Default image generated by scyld-add-boot-config", "exports": \
{"head23.cluster.local": {"targetcli": {"category": "iscsi", "location": \
"iqn.1998-04.com.penguincomputing:cb2eeba6fe3748febbb15c7cc1cfb165"}, \
"last_modified": 1721928167.775344, "last_modified_on": "head23.cluster.local"}}, \
"content": {"cwsquash": {"size": 1222410240, "mtime": 1721919588.6732733, \
"chksum": "sha1:7e24ac56d109394755302377c9226fa111aae45d", "filename": \
"486c1857bd214d3fad56dea1399b6440", "uid": "486c1857bd214d3fad56dea1399b6440"}, \
"last_modified": 1721919589.1442792, "last_modified_on": "head23.cluster.local", \
"last_modified_by": "admin1"}, "last_modified": 1721919581.66072, \
"last_modified_on": "head23.cluster.local", "last_modified_by": "admin1", \
"uid": "cb2eeba6fe3748febbb15c7cc1cfb165"}}

Look into the details statistics for the image:

284 Chapter 6. API Reference

ICE ClusterWare Documentation, Release 12.4.0

curl -X GET https://head1.cluster.local/api/v1/image/DefaultImage/content/info \
-H "Authorization: Bearer eyJhbGciOiJIUzI1Ni..."

{"success": true, "data": {"size": 1222410240, "mtime": 1721919588.6732733, "chksum": \
"sha1:7e24ac56d109394755302377c9226fa111aae45d", "refcnt": 1, "fmt": "cwsquash"}}

6.8 Dynamic Group Objects
Where Attribute Groups require intentional effort to join or leave, Dynamic Groups (DynGroups) are a way to group
nodes based on shared or common attributes, status, or hardware information. DynGroups also do not alter a node’s
attributes, so they are most useful in targeting an action at a group of similar nodes.

When issuing requests, the UID field in the URL can be either the actual UID of the object or the name of the object as
given in the "name" field.

6.8.1 Data Fields
The DynGroups fields are:

name
Required: The name for the Dynamic Group

selector
Required: A string representing a node-selector function (see below)

description
Optional: A text string with descriptive information

A node-selector function is a logical function that is computed based on a given node’s information. Since a node’s
boot configuration is set in the _boot_config attribute, the following will select all nodes that using DefaultBoot:

a[_boot_config]=="DefaultBoot"

the a[..] means to look up a nodes attribute, similarly h[..] can be used for hardware and s[..] for status. The
amount of total memory on a node is given in the hardware information, under the ram_total key:

h[ram_total] > 100000

will give the set of nodes with more than 1000000 bytes of memory.

See Attribute Groups and Dynamic Groups for more information on the node-selector language.

6.8.2 Additional Endpoints
To find the set of nodes that are currently in a given DynGroup, use the following endpoint:

GET /dyngroup/<UID>/nodes
Returns a JSON object with a list of node UIDs; if no nodes are currently in the
dynamic group, an empty list will be returned

6.8.3 Example
Create a dynamic group:

6.8. Dynamic Group Objects 285

ICE ClusterWare Documentation, Release 12.4.0

curl -X POST https://head1.cluster.local/api/v1/dyngroups --data \
'{"name":"BigMemory","selector":"h[ram_total] > 100GB"}'
-H "Authorization: Bearer eyJhbGciOiJIUzI1Ni..."

{"success": true, "data": "b30886d9c8ca40d99d66b668074811b1"}

Verify the group’s information:

curl -X GET https://head1.cluster.local/api/v1/dyngroup/BigMemory -H \
"Authorization: Bearer eyJhbGciOiJIUzI1Ni..."

{"success": true, "data": {"name": "BigMemory", "selector": "h[ram_total] > 100GB", \
"parsed": "(hardware[\"ram_total\"] > 100GB)", "last_modified": 1721930148.843629, \
"last_modified_on": "head23.cluster.local", "last_modified_by": "admin1", \
"uid": "b30886d9c8ca40d99d66b668074811b1"}}

Get the list of nodes currently in this DynGroup:

curl -X GET https://head1.cluster.local/api/v1/dyngroup/BigMemory/nodes -H \
"Authorization: Bearer eyJhbGciOiJIUzI1Ni..."

{"success": true, "data": ["199eadbea2084b80a4efcf445538efc5", \
"d3b59618750e4957bc3139a0a29cb1a8", "4343fc9a431d49e89639b8cf3644db9a", \
"9e831349cbcf484f8db075e12ef4dd9d", "35d6faece6a7411cb26a7c7b02fda708"]}

Delete the DynGroup:

curl -X DELETE https://head1.cluster.local/api/v1/dyngroup/BigMemory -H \
"Authorization: Bearer eyJhbGciOiJIUzI1Ni..."

{"success": true}

6.9 Naming Pool Objects
Naming Pools provide a mechanism to tie groups of nodes together through a common naming scheme, like n001
through n100. There is a default naming scheme that nodes will be assigned into; alternatively, when creating a node,
it can be directly inserted into an existing Naming Pool.

In addition to naming the nodes according to a pattern, the Naming Pool can also provide offsets to IP addresses or
include nodes into specified network segments.

When issuing requests, the UID field in the URL can be either the actual UID of the object or the name of the object as
given in the "name" field.

6.9.1 Data Fields
The Naming Pool fields are:

name
Required: The name for the Dynamic Group

pattern
Required: A string representing a naming pattern; a pattern may have one or more

letters followed by a set of curly-braces followed by another one or
more letters (see below)

description
(continues on next page)

286 Chapter 6. API Reference

ICE ClusterWare Documentation, Release 12.4.0

(continued from previous page)

Optional: A text string with descriptive information

first_index
Optional: Sets the first index for nodes added to this pool; default is 0

ip_base
Optional: Sets a base IP address for the first node in the pool; default is empty

(use the next available address in the default network)

ip_offset
Optional: Sets an offset for the IP address of the first node in the pool; default

is empty (use the next available address in the default network)

network
Optional: Sets the Network to use when setting IP addresses

group
Optional: Sets an Attribute Group object that all nodes in this pool will inherit

from; any node added to the pool will automatically be assigned the
attributes of this group (unless other Attribute Groups are assigned)

parent
Optional: Sets a parent Naming Pool for nested pools

There are several options for how naming pool patterns may be constructed:

pattern=”n{}”
This is the default, and indicates that nodes will be named “n0” and up; note
that in such a pattern, the name length is not constant which may lead to output
formatting errors (i.e. “n0” versus “n100” will lead to a 2 character offset)

pattern=”gpu{:03d}”
Will give names like gpu000, gpu001, gpu002, etc.; the “:03d” is formatted,
zero-padded, 3 digits

6.9.2 Additional Endpoints
Several additional endpoints are available:

GET /namingpools/info/<NODE>
For a given node, NODE, the system will reply with the naming pool information
used when naming that node

PUT /namingpool/<UID>/push
Used to push node names to be updated; this is an advanced feature, please contact
Penguin Solutions for more information.

6.9.3 Example
Create a naming pool:

6.9. Naming Pool Objects 287

ICE ClusterWare Documentation, Release 12.4.0

curl -X POST https://head1.cluster.local/api/v1/namingpools --data \
'{"name":"gpu","pattern":"gpu{}"}' -H "Authorization: Bearer eyJhbGciOiJIUzI1Ni..."

{"success": true, "data": "1049f3b2f2d744f088a4ee6cc3ecfc91"}

Check on a node’s naming pool:

curl -X GET https://head1.cluster.local/api/v1/namingpools/info/gpu0 \
-H "Authorization: Bearer eyJhbGciOiJIUzI1Ni..."

{"success": true, "data": {"index": 0, "pattern": "gpu{}"}}

6.10 Software Repository Objects
Software Repository objects (repos) are used to collect information about an upstream or local repository for software
packages.

When issuing requests, the UID field in the URL can be either the actual UID of the object or the name of the object as
given in the "name" field.

6.10.1 Data Fields
Admin objects have several fields:

name
Required: The name of the user on the underlying system

description
Optional: A text string with descriptive information

full_name
Optional: A text string for identifying the repos

urls
Optional: A list of URLs for the repos

mirrors
Optional: A list of mirror URLs for the repos

disable
Optional: A list of True/False flags for the URLs

keys
Optional: A list of keys for the URLs

check
Optional

rhel_entitlement
Optional: RedHat license entitlement key

288 Chapter 6. API Reference

ICE ClusterWare Documentation, Release 12.4.0

6.10.2 Additional Endpoints
For locally hosted repos, several endpoints can be used to investigate the ISO:

GET /repo/<UID>/iso
Downloads the ISO image for this repo. Note that the output format is different
from other ClusterWare commands – there are no “success” or “data” keys, just the
binary data of the ISO file being requested

PUT /repo/<UID>/iso
Uploads an ISO for this repo

DELETE /repo/<UID>/iso
Deletes the ISO for this repo; note that the repo's object itself will remain,
just the ISO will be deleted

GET /repo/<UID>/iso/stat
Returns basic statistics about the ISO file

6.11 Software Distribution Objects
Software Distribution objects (distros) are used to collect information about a software distribution. For example, which
repos hold packages and what packaging scheme is used.

When issuing requests, the UID field in the URL can be either the actual UID of the object or the name of the object as
given in the "name" field.

6.11.1 Data Fields
Admin objects have several fields:

name
Required: the name of the user on the underlying system

description
Optional: A text string with descriptive information

repos
Optional: A list of one or more Software Repository objects

packaging
Optional: A string representing the packaging scheme: rpm, deb, apk; if it cannot

be inferred from other data, “rpm” will be assumed

release
Optional: A string representing the name of the release

6.11.2 Additional Endpoints
There are no additional endpoints for distros; the basic operations all function as expected. For example, GET /
distro/<UID> will return information about the distro.

6.11. Software Distribution Objects 289

ICE ClusterWare Documentation, Release 12.4.0

6.12 State Set Objects
A State Set is a set of criteria that are used to identify groups of nodes in a given state. The states sets primitive is
accessed through the /nodes/waitfor URL, but is otherwise analogous to the other endpoints. Several endpoints
provide for the creation and modification of state sets.

6.12.1 Data Fields
The state set fields are:

name
Required: The name for the state set

api_state_set
Required: A dictionary of state-names and their corresponding node-selector

For example, POST /nodes/waitfor allows creation of a new state set. To completely replace the list of states, use
the PATCH /nodes/waitfor action with the “states” key.

6.12.2 Additional Endpoints
Several additional endpoints are available:

GET /nodes/waitfor
Returns a list of state sets (UIDs) that are currently defined

POST /nodes/waitfor
Create a new state set with the posted parameters

GET /nodes/waitfor/<NAME>
Returns detailed information for a given state set (by Name or UID)

PUT /nodes/waitfor/<NAME>
Update the information for a given state set (by Name or UID)

DELETE /nodes/waitfor/<NAME>
Deletes a given state set

GET /nodes/waitfor/<NAME>/nodes
Returns a list of nodes currently in the given state set

6.12.3 Example
Create a new state set:

curl -X POST https://head1.cluster.local/api/v1/nodes/waitfor \
--data '{"name":"my_states", “states”: { “red_state”: “index > 10” } }' \
-H "Authorization: Bearer eyJhbGciOiJIUzI1Ni..."
{"success": true, "data": "my_states"}

Get the detailed information on a state set:

290 Chapter 6. API Reference

ICE ClusterWare Documentation, Release 12.4.0

curl -X GET https://head1.cluster.local/api/v1/nodes/waitfor/my_states \
-H "Authorization: Bearer eyJhbGciOiJIUzI1Ni..."
{"success": true, "data": {"red_state": "index>10"}}

Delete the state set:

curl -X DELETE https://head1.cluster.local/api/v1/nodes/waitfor/my_states \
-H "Authorization: Bearer eyJhbGciOiJIUzI1Ni..."
{"success": true}

6.13 Network Objects
Network objects are used to collect information about network subnets that can be used for deploying compute nodes.

When issuing requests, the UID field in the URL can be either the actual UID of the object or the name of the object as
given in the "name" field. For Networks the name field is optional, so using the UID may be the most reliable approach.

6.13.1 Data Fields
Network objects have several fields:

first_ip
Required: The starting IP address for this network

ip_count
Required: (Integer) number of IP addresses that may be assigned on this subnet

mask_bits
Required: (Integer) number of bits for the network mask

name
Optional: The name of the user on the underlying system

description
Optional: A text string with descriptive information

first_index
Optional: (Integer) number for the first index of the nodes in this network

router_ip
Optional: The IP address for the router on this network

gateway_ip
Optional: The IP address for the gateway on this network

domain
Optional: The domain name to be set for this network

node_iface
Optional: Network interface used during booting

6.13. Network Objects 291

ICE ClusterWare Documentation, Release 12.4.0

6.13.2 Additional Endpoints
There are several additional endpoints for networks:

GET /nets/byiface/<PART>
This endpoint is deprecated and will be removed in a future release; returns a

JSON object with a list of networks that reference the interface name, NAME;
full or partial matches are returned

GET /nets/byname/<NAME>
Returns a JSON object with a list of networks that reference the network name, NAME;
full or partial matches are returned

GET /nets/byip/<IPADDR>
Returns a JSON object with a list of networks that reference the partial or full
IP address, IPADDR

GET /nets/bykey/<PART>
Returns a JSON object with a list of networks that reference the partial or full
UID, PART

6.14 Git Repository Objects
Git Repository objects (gitrepos) are used to create and manage locally hosted Git repositories, which may be useful
for automated configuration systems.

When issuing requests, the UID field in the URL can be either the actual UID of the object or the name of the object as
given in the "name" field.

6.14.1 Data Fields
Admin objects have several fields:

name
Required: The name of the user on the underlying system

description
Optional: A text string with descriptive information

public
Optional

url
Optional: A URL for the git repos that will be used for synchronization; note that

either “url” or “upstream” can be defined, but not both

upstream
Optional: A URL for an upstream git repos that will be used for synchronization;

note that either “url” or “upstream” can be defined, but not both

branch_map
Optional: A list of local-to-remote branch mappings

sync_period
(continues on next page)

292 Chapter 6. API Reference

ICE ClusterWare Documentation, Release 12.4.0

(continued from previous page)

Optional: Time between synchronization events for this gitrepos; can be a number
(seconds) or a string of the form “10m”, “2h”, “1d” for minutes, hours,
or days, respectively

6.14.2 Additional Endpoints
For gitrepos, several endpoints are available:

GET /gitrepo/{uid}/url
Returns a URL string that can be used to clone the gitrepo. The output
format is different from other ClusterWare commands – there are no “success” or
“data” keys, just the URL string. This endpoint is public and does not require an
authentication token

GET /gitrepo/{uid}/repo
Returns the top-level file in the repo. The output format is different
from other ClusterWare commands – there are no “success” or “data” keys, just the
(text) file. This endpoint is public and does not require an authentication token

GET /gitrepo/{uid}/repo/<PATH>
Returns the file in the repo at location PATH. The output format is
different from other ClusterWare commands – there are no “success” or “data” keys,
just the (text) file. This endpoint is public and does not require an
authentication token

GET /gitrepo/{uid}/content
Returns the top-level file in the repo. The output format is different
from other ClusterWare commands – there are no “success” or “data” keys, just the
(text) file. This endpoint is public and does not require an authentication token

GET /gitrepo/{uid}/content/<PATH>
Returns the file in the repo at location PATH. The output format is
different from other ClusterWare commands – there are no “success” or “data” keys,
just the (text) file. This endpoint is public and does not require an
authentication token

GET /gitrepo/{uid}/sync
While this is a GET operation, it accepts a JSON object payload with an “action”
key (required) and “branchmap” key (optional); action should be one of: 'status',
'checkout', 'reset', 'pull', 'rebase'

POST /gitrepo/{uid}/sync
Accepts a JSON object with an “action” key (required) and a “branchmap” key
(optional); action should be one of: 'status', 'checkout', 'reset', 'pull',
'rebase'

GET /gitrepo/{uid}/branches
While this is a GET operation, it accepts a JSON object with optional keys:
branchmap, all, filter; the branchmap is a list of branches to get information
about, the all parameter is True/False, and filter allows for more arbitrary
filtering of the gitrepos list

(continues on next page)

6.14. Git Repository Objects 293

ICE ClusterWare Documentation, Release 12.4.0

(continued from previous page)

DELETE /gitrepo/{uid}/branches
Accepts a JSON object with one or more optional keys: “branches” (a list of
branches to delete) or “all” (True/False, delete all branches in the gitrepos)

6.15 Hostname Objects
The ICE ClusterWare™ platform runs an DNS service to handle the name records needed for compute nodes and that
service can be extended to provide other hostname records as well. If a hostname record includes a MAC address,
then the ClusterWare system will include it in its DHCP service.

When issuing requests, the UID field in the URL can be either the actual UID of the object or the name of the object as
given in the "name" field.

6.15.1 Data Fields
name

Required: the name for the host

type
Required: a string representing the type of DNS record this will be: arec (IPv4),
aaaarec (IPv6), or srvrec (service)

description
Optional: a text string with descriptive information

ip
Required for arec and aaaarec: the IP address associated with this name

mac
Optional for arec and aaaarec: the MAC address associated with this name; if no
mac is given, then DHCP will not be configured for this host

target
Required for srvrec: the target server that is running this service

port
Required for srvrec: the port that the service is running on

service
Optional for srvrec: the service name for this SRV record, defaults to the name
of the record

proto
Optional for srvrec: the protocol that the service uses: tcp or udp

weight
Optional for srvrec: the “weight” given to this SRV record; if multiple SRV records
exist for the same target, the higher weight will be preferred

priority
Optional for srvrec: the “priority” given to this SRV record; if multiple SRV

(continues on next page)

294 Chapter 6. API Reference

ICE ClusterWare Documentation, Release 12.4.0

(continued from previous page)

records exist for the same target, the higher priority will be preferred

domain
Optional for srvrec: the domain portion of the FQDN; if not specified, it will
default to whatever the ClusterWare head node is configured with

6.15.2 Additional Endpoints
An additional endpoint is provided to search the hostnames by UID:

GET /hostnames/bypart/<PART>
A partial UID can be sent in <PART> and the system will return a list of all
hostname UIDs that match that partial UID

6.15.3 Example
Create a hostname record:

curl -X POST https://head1.cluster.local/api/v1/hostnames --data \
'{"name":"nfsserver","ip":"10.1.1.10"}' \
-H "Authorization: Bearer eyJhbGciOiJIUzI1Ni..."

{"success": true, "data": "e921725181c741fba6f4ec8a027a432f"}

Verify the record’s contents:

curl -X GET https://head1.cluster.local/api/v1/hostname/nfsserver -H \
"Authorization: Bearer eyJhbGciOiJIUzI1Ni..."

{"success": true, "data": {"type": "arec", "name": "nfsserver", "ip": "10.1.1.10", \
"last_modified": 1721931565.353962, "last_modified_on": "head23.cluster.local", \
"last_modified_by": "admin1", "uid": "e921725181c741fba6f4ec8a027a432f"}}

6.16 Cluster-wide Endpoints
There are a number of endpoints dedicated to cluster-wide information, or ICE ClusterWare™ configuration informa-
tion:

GET /cluster
Returns a JSON object with detailed information about the cluster, including the
current time on the cluster, the monitoring and authentication configuration,
image formats, plugins, etc.

PATCH /cluster
Accepts a JSON object with one or more key-value pairs; for each key, the
corresponding entry in the cluster database is overwritten; keys may be:
- default_group (change the default group that nodes are assigned to)
- naming (change the default naming scheme)
- accept_new_nodes (whether the cluster will attempt to boot nodes that have

not be previously defined)
- default_distro (change the default distro)
- influx_token (change the token used by InfluxDB and Grafana, parts of the

ClusterWare monitoring and alerting system)
(continues on next page)

6.16. Cluster-wide Endpoints 295

ICE ClusterWare Documentation, Release 12.4.0

(continued from previous page)

- cluster_name (change the name of the cluster)
- cluster_id (change the Penguin Solutions cluster ID number)
- auth_config (change settings needed by the authentication system)

GET /cluster/database
Returns a JSON object with information about the underlying ClusterWare database.
This endpoint is public and does not require an authentication token.

GET /cluster/summary
Returns a JSON object with a list of all object UIDs for all ClusterWare object
types.

GET /cluster/usage
Returns a JSON object with cluster-wide usage information; this requires that a
cluster accounting system be configured

GET /cluster/time
Returns a JSON object with the current time on the head node. This endpoint is
public and does not require an authentication token.

GET /cluster/accountant
Returns a JSON object with the current cluster accounting configuration

PUT /cluster/accountant
Used to set the cluster accounting configuration; this is an advanced topic,
please contact Penguin Solutions for more information.

GET /cluster/head/{uid}
Returns a JSON object with information about the specified head node.

GET /cluster/head/{uid}/log
Returns a JSON object with information about logs from the specified head node.

GET /cluster/hosts
Returns a JSON object with hostname-ipaddress pairs for all known nodes in the
cluster. This endpoint is public and does not require an authentication token.

GET /cluster/sshkeys
Returns a JSON object with information about the authorized keys for the cluster.
This endpoint is public and does not require an authentication token.

GET /cluster/cabundle
Returns a JSON object with information about the CA certificates for the cluster.
This endpoint is public and does not require an authentication token.

GET /cluster/license
Returns a JSON object with information about the ClusterWare license for this
cluster.

GET /whoami
Returns a JSON object identifying the current user

(continues on next page)

296 Chapter 6. API Reference

ICE ClusterWare Documentation, Release 12.4.0

(continued from previous page)

GET /whereami
Returns a JSON object identifying where (what node) the current user is attaching
from; this assumes that ClusterWare knows the server (that is, it’s a compute node
registered in the system)

6.17 Head Node Endpoints
The ICE ClusterWare™ platform stores head nodes objects in the database to assist with management and maintenance.

6.17.1 Data Fields
Head nodes have several fields:

uid
Required: A unique ID usually configured via a file on disk (base.ini)

ssh_public
Required: The SSH public key for this head node

description
Optional: A text string with descriptive information

ca_pem
Optional: A CA certificate

6.17.2 Additional Endpoints
Several endpoints can be used to interact with the head nodes:

GET /heads/down
Returns a JSON object with a list of all currently down head nodes

DELETE /heads/down
Deletes any currently down head nodes, removing them from the cluster; returns a
JSON object with a list of head nodes that were removed

GET /head/services
Returns a list of all ClusterWare services and their current status (up or down).
This endpoint does not require an authentication token, but requires that the
connection come from another known head node

POST /head/services
accepts a JSON object with “status” and “services” keys (both required); status
must be a comma-separated list of: 'start', 'stop', 'restart', 'enable', 'disable',
'reload'; and services must be a list of one or more head node services (e.g.
from a call to GET /head/services). This endpoint does not require an
authentication token, but requires that the connection come from another known
head node

GET /head/peerurl
Returns a JSON object with the peer URL for attaching a new head to the cluster.

(continues on next page)

6.17. Head Node Endpoints 297

ICE ClusterWare Documentation, Release 12.4.0

(continued from previous page)

This endpoint is public and does not require an authentication token

GET /head/files/unused
Returns a list of all ClusterWare-managed files (images, ISOs, etc.) that are
currently unused. This endpoint does not require an authentication token, but
requires that the connection come from another known head node

DELETE /head/files/unused
Deletes any currently unused files, removing them from the cluster; returns a
JSON object with a list of files that were removed. This endpoint does not require
an authentication token, but requires that the connection come from another known
head node

GET /database/clean
Returns a JSON object with information about what a database “cleaning” would do
(but does not perform the cleaning)

POST /database/clean
Performs database cleaning on the head node and returns a JSON object with
information about what was performed

POST /database/leave
Requests that this head node leave the cluster. This endpoint does not require
an authentication token, but requires that the connection come from another known
head node

³ Caution

This action may cause significant disruption to a running cluster; contact Penguin Solutions for additional informa-
tion or assistance.

6.18 Boot-time Support Endpoints
Several ICE ClusterWare™ endpoints are designed to support low-level boot-time processes like kickstart, ztp, and
ignition:

GET /kickstart/<NAME>
Returns the kickstart file with the given name; the file must already exist and
be located in the /opt/scyld/clusterware/kickstarts directory. The
output format is different from other ClusterWare commands – there are no
“success” or “data” keys, just the (text) file. This endpoint is public and does
not require an authentication token

GET /ztp/script
Returns a ZTP script or config file for a given node; the node is determined by
the incoming connection’s IP address and the node must have its “_boot_config”
attribute set to "ztp:<ZTP_SCRIPTNAME>“. The script must already exist and be
located in the /opt/scyld/clusterware/kickstarts directory. The output
format is different from other ClusterWare commands – there are no “success” or
“data” keys, just the (text) file. This endpoint is public and does not require

(continues on next page)

298 Chapter 6. API Reference

ICE ClusterWare Documentation, Release 12.4.0

(continued from previous page)

an authentication token

GET /ignition/bin
Returns the ignition binary for use by the booting node. The output
format is different from other ClusterWare commands – there are no “success” or
“data” keys, just the (text) file. This endpoint is public and does not require
an authentication token

GET /ignition/<UID>
Returns the ignition configuration file for the node identified by UID; the node
must have its “_ignition” attribute set to the configuration to use. That
configuration may be a URL, a git repo URL, or a locally hosted config file. The
file must already exist and be located in the /opt/scyld/clusterware/kickstarts
directory. The output format is different from other ClusterWare
commands – there are no “success” or “data” keys, just the (text) file. This
endpoint is public and does not require an authentication token

GET /install/head/scyld-install
Returns a `scyld-install` script that can be used to join a server to the current
head node. This may be useful when automating the creation of multi-head clusters.
The output format is different from other ClusterWare commands – there
are no “success” or “data” keys, just the (text) file. This endpoint is public
and does not require an authentication token

POST /install/password
Accepts a JSON object with an “admin_pass” key and value and verifies that
the password is correct for access to the ClusterWare database. This may be
useful when automating the creation of multi-head clusters. This endpoint is
public and does not require an authentication token

GET /install/repo
Returns a JSON object with a data field containing a repository configuration
suitable for another head node. This may be useful when automating the creation
of multi-head clusters. This endpoint is public and does not require an
authentication token

GET /install/client/installer
Returns a shell script that can be used to install a system with the ClusterWare
node package and related monitoring packages. If requested with no parameters,
a “pre-installation” script will be returned that will attempt to find out the CPU
architecture, OS name, and software packaging system. Alternatively, send the
following HTTP parameters and get a more customized installer script: ::

cpu=x86_64
specify the CPU architecture; one of x86_64 or aarm64
os=rhel8
specify the OS; one of rhel, debian, cumulus, or sonic
pkg=tar
specify the software packaging system; one of tar, rpm, or deb

If one or more parameters are omitted, then the system will select the installer
that best matches the set of parameters that were sent. Clients must be aware

(continues on next page)

6.18. Boot-time Support Endpoints 299

ICE ClusterWare Documentation, Release 12.4.0

(continued from previous page)

that a different packaging system may be returned; for example, requesting the
rpm installer may return a tar-based installer instead.

GET /install/client/download/<PKGSYS>/<NAME>
Downloads the package named NAME from the head node, where the packaging
system is determined by PKGSYS. PKGSYS is one of tar, rpm, or deb. Note that
this simply downloads the package and does not install it.

6.18.1 Client Download Endpoints
ClusterWare head nodes host a set of user-provided software packages that compute nodes can download and in-
stall. Several packages are pre-populated in the system, and you can copy your own packages to /opt/scyld/
clusterware/clientpkgs directories to allow clients to download them as well. For a given package, the following
endpoints allow the client to define the desired architecture and package type:

/install/client/download/{pkgname}
/install/client/download/{pkgtype}/{pkgname}
/install/client/download/{pkgtype}/{pkgarch}/{pkgname}

Where:

• pkgname is a string containing the name of the package to download

• pkgtype is one of (rpm, deb, tar, tgz, tar.gz). tar, tgz, and tar.gz are equivalent. Default=rpm

• pkgarch is one of (x86_64, amd64, aarch64, arm64). X86_64 and amd64 are equivalent; aarch64 and arm64
are equivalent. x86_64/aarch64 are the RHEL/rpm names and amd64/arm64 are the Debian names. Target
architecture must be defined or the default will be used. Default = x86_64

ò Note

pkgtype and pkgarch can also be defined in HTTP parameters at the end of the URL. For example, http://
head1.cluster.local/api/v1/download/mypackage?pkg=rpm&arch=x86_64.

If you request a tar file, the system first looks for a tar file in the /opt/scyld/clusterware/clientpkgs/tar
directory. If nothing is found there, the system looks in /opt/scyld/clusterware/clientpkgs/rpm and, if the
package is found, the rpm is converted to tar and stored in /opt/scyld/clusterware/clientpkgs/tar for future
access. This same conversion rule is in place for all three endpoints.

s Important

In a multi-head cluster, the main directory is not automatically replicated to all head nodes. You must manually
add packages to all head nodes.

300 Chapter 6. API Reference

CHAPTER

SEVEN

RELEASE NOTES, CHANGELOG, AND KNOWN ISSUES

ICE ClusterWare™ Release v12.4.0 is the latest update to the ClusterWare platform.

Release Notes provides high-level summary information about the latest ClusterWare release.

Changelog includes a history of the most recent ClusterWare releases.

Known Issues And Workarounds has a summary of notable known current issues.

7.1 Release Notes
ICE ClusterWare™ Release v12.4.0 is the latest update to the ClusterWare platform.

For the most up-to-date product documentation, visit https://docs.ice.penguinsolutions.com/. The most recent ver-
sion will accurately reflect the current state of the ClusterWare yum repository of RPMs that you are about to in-
stall. For additional helpful information about ClusterWare, visit the Penguin Computing Support Portal at https:
//www.penguinsolutions.com/computing/support/technical-support/.

Release Notes:

• Version 12.4.0 introduces the concept of "providers", i.e. external sources for hardware resources. The initial
provider uses virsh to allow ClusterWare administrators to connect to an existing hypervisor running libvirt and
allocate virtual machines in a streamlined way using the new scyld-clusterctl providers command. A cluster
administrator can use these virtual machines as ephemeral test instances while developing images or deploy a
persistent image to the virtual disks to make a login node.

Although this first virsh provider can only be bound to individual hypervisors, another provider currently under
development will be able to allocate machines on KubeVirt compatible Kubernetes deployments. Other providers
could also be implement an interface between ClusterWare and other virtualization platforms or provisioning
systems.

• This version also includes a reworked graphical user interface (GUI) and many bug fixes and performance im-
provements.

• Starting with version 12.4.0, the product has been rebranded from Scyld ClusterWare to ICE ClusterWare in the
GUI and documentation.

See Changelog for a full history of ClusterWare releases, and Known Issues And Workarounds for a summary of notable
known current issues.

7.2 Changelog
See Release Notes for summary information about the latest ICE ClusterWare™ release. This section contains a more
detailed ChangeLog history of all recent releases.

301

https://docs.ice.penguinsolutions.com/
https://www.penguinsolutions.com/computing/support/technical-support/
https://www.penguinsolutions.com/computing/support/technical-support/

ICE ClusterWare Documentation, Release 12.4.0

7.2.1 12.4.0-g0000 - February 3, 2025
• The product is rebranded from Scyld ClusterWare to ICE ClusterWare. Initial changes are reflected in the product

GUI and in the documentation. Future releases will introduce additional branding updates, including updates to
the command line tools.

• Implement the first providers plugin, specifically supporting hypervisors running libvirt using virsh and virt-
install commands.

• Include a couple of example deploy scripts in the /opt/scyld/clusterware-tools/examples/deploy directory.

• Reduce repetitive logging.

• Implement a new _altmacs reserved attribute that passes alternative MAC addresses for a node to the DHCP
server. This attribute may be replaced by a more robust solution in future releases.

• Significant simplifications and improvements to the scyld-kube tool used for deploying Kubernetes.

• Mark nodes as "busy" if virsh list shows running virtual machines on the node.

• A new scyld-modimg --deploy argument allows administrators to execute an Ansible playbook against an
image or combine the copy and execute steps for running a shell script inside the image.

• The scyld-modimg command now accepts a --progress argument to either not print remaining time or to
print dots instead of detailed progress.

• Propagate errors from the debootstrap tool out to the user to simplify Ubuntu image creation debugging.

• Prevent users with the NoAccess role from even logging in and prevent tmpadmins from minting tokens.

• Improve parsing of scyld-modimg --run scripts and document the functionality.

• Add --discard-on-error option to scyld-modimg to facilitate scripting and automation.

• The scyld-clusterctl nets tool allows admins to define additional networks where ClusterWare nodes may
be connected.

• Improved ClusterWare graphical user interface (GUI) information architecture to help new users navigate the
product.

• Each primitive now presents a set of labeled fields and components within the ClusterWare GUI that are cus-
tomized to that primitive.

• Updated ClusterWare GUI colors and logos to match the new product branding.

• Make ipmitool and rasdaemon weak dependencies of clusterware-node.

• Implement a new _aim_status reserved attribute and add support in scyld-nodectl status to show status
based on that attribute. Contact Penguin Computing to learn more.

• Rearrange the build system to better isolate Pyramid code.

• Move image exports from the image to the head that does the export.

• Replace libvirt power plugin with a version that calls virsh.

• Remove the deprecated socket-based waitfor code.

• Add stricter versioned dependencies between some packages.

• Ensure scyld-clusterctl hosts entries are pushed to scyld-nss.

• Remove more references to el7 and remove development packages required by el7 builds.

• Keep the dnsmasq service up during clusterware service restarts.

• Allow the mosquitto service to start even with missing certificates.

302 Chapter 7. Release Notes, Changelog, and Known Issues

ICE ClusterWare Documentation, Release 12.4.0

• Add image locking during modification to prevent administrators from accidentally overwriting each other's
changes.

• Improve scyld-modimg to make conflicts between different instances less likely.

• Implement shared-key encryption for communications between head nodes using stunnel.

• Improve our parsing of ip output.

• Add documentation about communication encryption.

• Switch telegraf from UDP to HTTP(S) with a new relay service, significantly reducing telemetry gaps.

• Improved method for deploying client packages to switches.

• Document how to change the etcd password and create a script to recover if the etcd passwords is lost. Contact
Penguin Computing for assistance with the script.

• Improve the slurm and kubernetes installation scripts.

• Include the API Reference as a part of our standard documentation.

• Add a missing dependency required to build newer Ubuntu images.

• Update the supported distros table to include el8.10 and el9.5.

• Update documentation information architecture and HTML site design to improve user experience.

• Assorted other bug fixes and documentation updates.

7.2.2 12.3.0-g0000 - October 4, 2024
• Reduce polling in scyld-nodectl status --refresh, but leverage the waitfor framework and MQTT.

• Switch to a Unix socket to communicate between the ClusterWare backend and etcd to enable updating gRPC.

• Add a new _bootnet attribute for customizing the name of the bootnet interface.

• Support --selector to select nodes in slurm-scyld.setup.

• Introduce an improved clusterware-node deployment mechanism for SONiC switches.

• Make compute node code scripting less likely to produce a bad parent-head-node line in /etc/hosts.

• Support creating tmpfs subdirectories in ignition for diskless STIG'd systems.

• Cleaner handling of the client.sslverify setting.

• Reduce the head node minimum memory check after removal of Couchbase.

• Restrict access to the GUI to only accept secure remote connections.

• Bump the version numbers for most Python dependencies.

• Correct "frozen" image handling during import and refuse to delete frozen images.

• Remove deprecated code, including code specific to el7 head nodes.

• Add functionality for Telegraf to collect ClusterWare node attributes.

• Change technique for converting node lists into ranges when reporting status.

• Tighten some directory permissions.

• Correct the _ipxe_sanboot creation during bootload installation.

• Fix a scyld-bootctl export failure that previously required a patch.

• Provide a mechanism for setting a realtime IO priority on etcd.

7.2. Changelog 303

ICE ClusterWare Documentation, Release 12.4.0

• Make it more difficult to modify a cached version of an image unintentionally.

• Improve gitrepo backend handling to avoid common failures.

• Stop creating .old.XX files when modifying objects in multi-head clusters.

• Avoid the MOTD interfering with scyld-nodectl scp.

• Small fixes to boot chaining failure handling.

• Wider use of the cluster certificate authority to securing communications.

• Fixes for netplan configurations in Ubuntu images.

• Restart Telegraf when moving between head nodes.

• KeyCloak integration improvements.

• Assorted other bug fixes and documentation updates.

7.2.3 12.2.0-g0000 - July 26, 2024
• Improve Grafana column scaling.

• Quiet a warning about TripleDES by removing it as an option from paramiko.

• Support _boot_style=iscsi on el8 and el9 systems.

• Update CentOS 7 and CentOS Stream 8 URLs to use vault.centos.org since el7 is now also EOL.

• Improve DNS resolution of head nodes with multiple IPs using localise-queries in the dnsmasq.conf.template
but also include a leases.register_heads boolean to disable entire feature.

• Write NetworkManager connection files on el9 systems and improve netplan configuration file writing on Ubuntu.

• Initial Redfish support including an aggregation daemon with more changes and documentation coming later.

• Provide a mechanism to create a bootable ISO from one or more boot configs.

• Improve handling of slurm uid and gid syncing when installing packages.

• Add arguments to scyld-nodectl kexec to allow for one-time-booting using a specific image or boot config-
uration.

• Improve the scyld-modimg --capture error handling.

• Downgrade ansible-core to 2.15.10 to match Python 3.9.

• Small improvements and cleanups across the GUI.

• Introduce a new RBAC system for administrators, current scoped cluster-wide. All existing admins will now
have the FullAdmin role.

• Support substitution within the power_uri field.

• Initial support for deploying Harvester nodes from an ISO.

• Unhide the existing scyld-clusterctl nets functionality.

• Include the mosquitto MQTT server to publish system events.

• Confirm keys added through scyld-adminctl can be loaded with paramiko.

• Improved Ubuntu image handling in scyld-modimg.

• Expose the limited but existing scyld-nodectl scp functionality.

• Improve ZTP handling but still only supporting Cumulus.

• Improve the unknown nodes tab for unrecongized dhcp clients.

304 Chapter 7. Release Notes, Changelog, and Known Issues

ICE ClusterWare Documentation, Release 12.4.0

• Include a mechanism to mask attribute values in normal output. Default to masking _remote_pass,
_tpm_owner_pass, and _bmc_pass.

• Make more of an effort to mask the SOL password in output.

• Prevent the creation of unrecognized reserved attributes and update reserved attributes documentation.

• Include a sched_watcher agent for collecting node status from slurm.

• Rework compute node client certificate handling.

• Clean up dhcp6 error messages.

• Fix kernel version sorting in sclyd-mkramfs.

• Update numerous python and npm dependencies.

• Assorted other bug fixes and documentation updates.

7.2.4 12.1.1-g0000 - January 23, 2024
• Assorted fixes for initramfs ignition use when booting el9 nodes.

• Rework how scyld-nodectl ssh gets node keys allowing for ssh into el9 nodes with FIPS enabled.

• Print names in place of some UIDs returned by scyld-*ctl tools.

• Note and handle that ram_total / ram_free are stored in KiB.

• Check all uses of urlparse().netloc and replace several with urlparse().hostname.

• Assorted test script and other bug fixes.

7.2.5 12.1.0-g0000 - December 28, 2023
• Head node hosted gitrepos can mirror upstream repositories.

• Several bug fixes around the scyld-nodectl waitfor functionality.

• Hide the exports section in scyld-imgctl output unless -L is used.

• Fix a long standing bug during file upload where "Finishing up..." still be displayed after upload was complete.

• Fix a long standing bug during file upload that caused an additional file checksum computation.

• Deprecate the nodes.boot_timeout global in favor of a per-node _boot_timeout attribute.

• Fix head node eject / leave functionality to make it less likely a removed head node will automatically rejoin or
try to provide services to compute nodes.

• Fix PREFER_KMOD handling in /opt/scyld/clusterware-tools/conf/mkramfs.conf

• Technology preview of a scheduler-watcher that can be used to feed scheduler status into the ClusterWare
database. Attribute names and other details may change.

• Enable the slider to show and hide scheduler status within the GUI if any node has status information.

• Avoid address-in-use socket errors with multiple backend daemon threads.

• Fix typos that broke sync-uids and take-snapshot in ClusterWare 12.

• Make systems for node status, hardware, heath, and monitoring use plugins for easier management.

• Authenticate with a user's SSH agent if they have already uploaded their public keys into the system.

• New support for partitioning during boot using ignition. See the documentation for the _ignition reserved at-
tribute for details.

7.2. Changelog 305

ICE ClusterWare Documentation, Release 12.4.0

• Support for installing the GRUB 2 bootloader during boot. See the documentation for the _bootloader reserved
attribute for details.

• Improved image capture capabilities with better error handling and using optional credentials and sudo.

• Implement a local signing authority for node client certificates stored in node TPMs.

• Support searching for a node by hostname even when it differs from the ClusterWare node name.

• Allow matching of naming pools in node selection using the same syntax that already matched dynamic groups.

• Add support for attaching an attribute group to a naming pool.

• Add _domain to specify the domain without using _hostname.

• Confirmed ClusterWare works on Rocky 9.3 and similar distros.

• Add a mechanism (chroot.env_paths) to define specific environment variables during image creation.

• Fix several bugs around node renaming that could have permitted multiple nodes with the same MAC or similar
issues.

• Assorted GUI improvements, bug fixes, and performance improvements.

7.2.6 12.0.1-g0000 - July 24, 2023
• Reimplement and expose the scyld-nodectl scp functionality.

• Push scyld-pack-node to systems when running scyld-modimg capture. This also allows us to remove the
clusterware-common package.

• Improve proxy handling during the installation process.

• Improve the handling of the _hosts attribute.

• Initial support for scripting scyld-modimg through --run.

• Provide a mechanism for changing the default hash from sha1 to sha256 or sha512.

• Deprecate scyld-install --clear in favor of --clear-all.

• Fix output labelling in scyld-nodectl exec results.

• Mark node status and the current head node in managed --heads output.

• Expand image capture to use _remote_user / _remote_pass.

• Improved Debian / Ubuntu image creation.

• Use the latest squashfs tools for packing and unpacking images.

• Assorted bug fixes and performance improvements.

7.2.7 12.0.0-g0000 - April 21, 2023
• The first release of ClusterWare version 12. Please see Updating ClusterWare 11 to ClusterWare 12 for more

details.

• Support RHEL / Rocky 9 as a head node and compute node platform.

• Upgrade to use Python 3.9 on all head node platforms.

• Entirely rewritten GUI with much more functionality.

• Switch to Telegraf, InfluxDB version 2, and Grafana instead of TICK. See Grafana Telemetry Dashboard for
details about Grafana.

• Initial support for GRUB 2 as an alternative for iPXE.

306 Chapter 7. Release Notes, Changelog, and Known Issues

ICE ClusterWare Documentation, Release 12.4.0

• Configure chrony at install time for time sync within the cluster.

• Update managedb save to default to saving ONLY the database.

• Fix selection language matching for attributes[_boot_config].

• Include a newer (4.6) version of squashfs tools for more recent SELinux-related features.

• Allow command line clients to authenticate by signing messages with their SSH keys.

• Remove banner.txt support and use SSH LogLevel to control banner display when executing remote commands.

• Avoid a crash when two attributes only differ in capitalization.

• Fix "accept unknown nodes" behavior.

• Fix behavior of scyld-nodectl exec --label.

• Implement a new JWT-based authentication system with refresh tokens.

• New in-memory caching and indexing mechanism to improve document store lookup times.

• Provide a mechanism to record additional DNS mappings in the ClusterWare database.

• Default to installing config-less Slurm.

• Provide a tool to create a scyld-kube.iso for installation on clusters without internet access.

• Support booting nodes using UEFI in HTTP mode.

• Implement a restricted status-updater for "busy" nodes in C code, and provide attribute _status_cpuset to
restrict cw-status-updater service subprocesses to a specific set of CPU cores.

• Remove all references to Couchbase and some remaining NFS references.

• Enable scyld-nss by default on head nodes for name resolution.

• Use the dracut version native to the image instead of a custom ClusterWare version.

• Multi-head clusters now automatically rebalance nodes between heads.

• Many other bug fixes and optimizations.

7.3 Known Issues And Workarounds
The following are known issues of significance with the latest ICE ClusterWare™ version and suggested workarounds.

• Scyld OpenMPI versions 4.0 and 4.1 for RHEL/CentOS 8 require ucx version 1.9 or greater, which is available
from CentOS 8 Stream and RHEL 8.4.

• When using a TORQUE or Slurm job scheduler (see Job Schedulers), if a node reboots whose image was not cre-
ated using /opt/scyld/clusterware-tools/bin/sched-helper, then the cluster administrator must man-
ually restart the job scheduler.

For example, if needed for a single node n0: NODE=n0 torque-scyld-node or NODE=n0 slurm-scyld-node.
Or to restart on all nodes: torque-scyld.setup cluster-restart or slurm-scyld.setup
cluster-restart.

Ideally, compute node images are updated using torque-scyld.setup update-image or slurm-scyld.
setup update-image, which installs the TORQUE/Slurm config file in the image and enables the appropriate
service at node startup.

• If administrators are using scyld-modimg to concurrently modify two different images, then one administrator
will see a message of the form:

7.3. Known Issues And Workarounds 307

ICE ClusterWare Documentation, Release 12.4.0

WARNING: Local cache contains inconsistencies.
Use --clean-local to delete temporary files, untracked files,
and remove missing files from the local manifest.

then use scyld-modimg --clean-local.

However, only execute --clean-local after all scyld-modimg image manipulations have completed.

• Ensure that /etc/sudoers does not contain the line Defaults requiretty; otherwise, DHCP misbehaves.

• The NetworkManger-config-server package includes a NetworkManager.conf config file with an enabled "no-
auto-default" setting. That is incompatible with ClusterWare compute node images and will cause nodes to
lose network connectivity after their boot-time DHCP lease expires. Either disable that setting or remove the
NetworkManger-config-server package from compute node images.

• The scyld-clusterctl repos create command has a urls= argument that specifies where the new repo's
contents can be found. The most common use is urls=http://<URL>. The alternative urls=file://
<pathname> does not currently work. Instead, you must first manually create an http-accessible repo from
that pathname. See Creating Local Repositories without Internet.

• When moving a head node from one etcd-based cluster to another using the managedb join command, please
reboot the joining head once the join is complete.

• If a new head node is failing to join an existing etcd-based cluster, check /var/log/clusterware/etcd.log
and look for repeated lines of the form:

<DATE> <SERVER> etcd: added member <HEX> [<URL>:52380] to cluster <HEX>

If the log file contains multiple of these line per join attempt, then please try running managedb recover on
an existing head node and joining all head nodes back into the cluster one-at-a-time. Re-joining heads that were
previously in the cluster may require a --purge argument, i.e. managedb join --purge <IP>

• scyld-install performs its early check to determine if a newer clusterware-installer RPM is available by
parsing the appropriate clusterware repo file (typically /etc/yum.repos.d/clusterware.repo) to find the
first base_url= line. If there are multiple such lines, i.e., specifying multiple ClusterWare repos, then the cluster
administrator should order the repos so that the repo containing the newest RPMs is the first repo in the file.

• A compute node using a version of clusterware-node older than 11.2.2 and booting from a head node that
has upgraded to 11.7.0 or newer may not successfully send its status to the head node. Please upgrade the
clusterware-node package inside the image to resolve this problem.

• Joining a ClusterWare 11 head node to a ClusterWare 12 head node will perform the join, but will not update the
joining head node to ClusterWare 12. We recommend updating the ClusterWare 11 node to 12 prior to performing
the join. See Updating ClusterWare 11 to ClusterWare 12 for guidance about performing this update.

• Updating from 12.0.1 and earlier to 12.1.0 requires reconfiguration of the Influx/Telegraf monitoring stack.
The following command can be used to update the necessary config files: /opt/scyld/clusterware/bin/
influx_grafana_setup --tele-env, followed by systemctl restart telegraf. All data will persist
through the upgrade.

• When using ignition to make partitions the partition specified with _disk_root will be formatted with the ext4
file system even if the ignition file specifies another file system such as XFS.

308 Chapter 7. Release Notes, Changelog, and Known Issues

CHAPTER

EIGHT

FREQUENTLY ASKED QUESTIONS (FAQ)

The following is a set of common questions and cross-reference pointers to the answers in the ICE ClusterWare™
documentation.

8.1 Software Install/Update
How do I install or update the product RPMs?

Always use scyld-install to install or update the basic ClusterWare packages. See Install ICE Cluster-
Ware and Updating Base Distribution Software.

For optional ClusterWare packages that are not managed by scyld-install, see Additional Software.

Use a simple yum install or yum update to install or update non-ClusterWare base distribution pack-
ages.

How do I install or update software without head node Internet access?
See Creating Local Repositories without Internet.

8.2 Cluster Management
What if all ``scyld-*`` commands fail?

One reason may be the root filesystem is full. See Head Node Filesystem Is 100% Full.

Another reason may be the etcd database exceeds its size limit. See etcd Database Exceeds Size Limit.

What are hardware requirements for the latest release?
See Required and Recommended Components.

How do I add a compute node?
See Node Creation with Known MAC address(es) or Node Creation with Unknown MAC address(es).

How do I replace a compute node?
See Replacing Failed Nodes.

How do I configure multiple head nodes?
See Managing Multiple Head Nodes.

How do I configure a job scheduler, like Slurm, TORQUE, or OpenPBS?
See Job Schedulers.

How do I install and configure OpenMPI?

309

ICE ClusterWare Documentation, Release 12.4.0

See OpenMPI, MPICH, and/or MVAPICH.

How do I keep the host keys consistent across all compute nodes?
See Compute Node Host Keys.

How do I change a node name?
See Node Names and Pools.

How do I change IP addresses?
See Changing IP Addresses.

8.3 Manipulating Compute Node Images
How do I create an image containing a non-default kernel?

See Modifying Images.

How do I recreate the default image, boot config, and attributes?
See Recreating the Default Image.

How do I create an image containing a non-default base distribution?
See Creating Arbitrary Rocky Images or Creating Arbitrary RHEL Images.

How do I delete unused images or boot configurations to free storage space?
See Deleting Unused Images.

8.4 Issues with Interacting with Compute Nodes
What if all ``scyld-*`` commands fail?

One reason may be the etcd database exceeding its size limit. See etcd Database Exceeds Size Limit.

Why does ``scyld-nodectl -i <NODE_NAME> ssh`` fail?
Why does ``scyld-nodectl -i <NODE_NAME> shutdown`` or ``reboot`` fail?

310 Chapter 8. Frequently Asked Questions (FAQ)

CHAPTER

NINE

LICENSE AGREEMENTS

9.1 End-User License Agreement
Penguin Computing Software End User License Agreement

Last revised: 1/30/2025

LEGAL NOTICE - READ CAREFULLY BEFORE INSTALLING OR OTHERWISE USING THIS SOFTWARE.

This License Agreement (the "Agreement") is a legal agreement between you, a single legal entity ("End User"), and
Penguin Computing ("Penguin"). This Agreement governs your use of the ICE ClusterWare™ or ICE RemoteWare™
software defined below (the "Software") and any accompanying written materials (the "Documentation"). You must
accept the terms of this Agreement before installing, downloading, accessing or otherwise using such Software and
documentation.

By "ACCEPTING" at the end of this Agreement, you are indicating that you have read and understood, and assent to be
bound by, the terms of this Agreement. If you are an individual working for a company, then you represent and warrant
you have all necessary authority to bind your company to the terms and conditions of this Agreement.

If you do not agree to the terms of the Agreement, you are not granted any rights whatsoever in the Software or
Documentation. If you are not willing to be bound by these terms and conditions, do not "ACCEPT" the EULA and
remove the software from the system immediately.

END USER LICENSE AGREEMENT FOR SOFTWARE

1. Definitions

• "Clustered System" means a collection of computer systems managed by the Software and for which the
total number of computers in the system is specified in the End User purchase order.

• "Master Node" means the computer or computers designated as the Master Node(s) in the applicable End
User purchase order, where the Software is initially installed and from which the total number of computers
comprising the Clustered System are managed.

• "Software" means the software provided under this Agreement by Penguin or its authorized distributor or
reseller and for which the applicable End User purchase order specifies: (i) the Software to be licensed
by End User; (ii) the Master Node(s); (iii) the license fees; and (iv) the total number of computers in the
Clustered System for which End User has paid applicable license fees and the term of the Software usage.

The Software is comprised of a collection of software components that fall into three (3) categories: (a)
"Unpublished Software" which is owned by Penguin and/or its licensors and licensed under the terms of
this Agreement; (b) "Published Software" which is owned by Penguin and licensed under the GPL version
2 open source license or such other open source license as Penguin may elect in its sole discretion; and (c)
"Open Source Software" which is owned by various entities other than Penguin and is subject to the "open
source" or "free software" licenses, including but not limited to General Public Licenses (GPL), Lesser
General Public License (LPGL), Apache, Artistic, BSD, IBM Public, Mozilla, Omron, Open Group Public
License, and Python licenses.

311

ICE ClusterWare Documentation, Release 12.4.0

• "Client Connections" means the simultaneous connections between any software client and Software, where
a connection creates a persistent and unique Software session per software client.

2. License

• License Grant. Subject to the terms and conditions of this Agreement, Penguin grants to End User a non-
exclusive, non-transferable, non-sub licensable right and license to (a) reproduce (solely to download and
install), perform, and execute the Unpublished Software on the specified Master Node(s), solely for End
User's internal purposes, and (i) solely for use on the number of computers in the Clustered System and (ii)
not to exceed the maximum number of Client Connections for which End User has paid the required license
fees for the authorized term; and (b) make one (1) copy of the Unpublished Software and Documentation
for backup and/or archival purposes only.

• Restrictions. The End User shall not, and shall not permit any third party to: (a) sell, lease, license, rent,
loan, or otherwise transfer the Unpublished Software or Documentation, with or without consideration;
(b) permit any third party to access or use the Unpublished Software or Documentation; (c) permit any
third party to benefit from the use or functionality of the Unpublished Software via a timesharing, service
bureau, or other arrangement; (d) transfer any of the rights granted to End User under this Agreement;
(e) reverse engineer, decompile, or disassemble the Unpublished Software; (f) modify or create derivative
works based upon the Unpublished Software or Documentation, in whole or in part; (g) reproduce the
Unpublished Software or Documentation, except as expressly permitted in Section 2.1 above; (h) remove,
alter, or obscure any proprietary notices or labels on the Unpublished Software or Documentation; (i) use
the Unpublished Software for any purpose other than expressly permitted in Section 2.1 above; or (j) use
the Unpublished Software for more than the total number of computers, or longer than the authorized term
the End User is licensed for pursuant to Section 2.1 above.

• Open Source Software. The Open Source Software and Published Software are not subject to the terms
and conditions of Sections 2.1, 2.2, or 6. Instead, each item of Open Source Software and Published
Software is licensed under the terms of the end-user license that accompanies such Open Source Software
and Published Software, as may be located in the product packaging or available on-line. End User agrees to
abide by the applicable license terms for any such Open Source Software and Published Software. Nothing
in this Agreement limits End User's rights under, or grants End User rights that supersede, the terms and
conditions of any applicable end user license for the Open Source Software or Published Software. In
particular, nothing in this Agreement restricts End User's right to copy, modify, and distribute any of the
Open Source Software and Published Software that is subject to the terms of the GPL and LGPL. For the
Open Source Software and Published Software subject to the GPL and LGPL, for a period of three (3) years
following End User's receipt of the Software, End User may contact Penguin at the address below in writing
and request a copy of the source code for such Open Source Software or Published Software at Penguin's
then-current fees.

3. Ownership. The Software is licensed, not sold. Penguin and its licensors retain exclusive ownership of all appli-
cable worldwide copyrights, trade secrets, patents, and all other intellectual property rights throughout the world,
and all applications and registrations relating thereto, in and to the Unpublished Software, Published Software,
and Documentation, and any full or partial copies thereof, including any additions or modifications to the Unpub-
lished Software and Documentation. End User acknowledges that, except for the limited license rights expressly
provided in this Agreement or the Open Source Licenses, as applicable, no right, title, or interest to the intel-
lectual property in the Software or Documentation is provided to End User, and that End User does not obtain
any rights, express or implied, in the Software or Documentation. All rights in and to the Software not expressly
granted to End User in this Agreement or the Open Source Licenses, as applicable, are expressly reserved to Pen-
guin and its licensors. The "ICE ClusterWare™", "ICE RemoteWare™" and "Penguin Computing" trademarks
and associated logos are the trademarks of Penguin and its affiliates. This Agreement does not permit End User
to use the Penguin trademarks.

4. Limited Warranty. TO THE MAXIMUM EXTENT PERMITTED UNDER APPLICABLE LAW, THE SOFT-
WARE IS PROVIDED AND LICENSED "AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESSED
OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY, NON- INFRINGE-
MENT, TITLE OR FITNESS FOR A PARTICULAR PURPOSE. PENGUIN DOES NOT WARRANT THAT

312 Chapter 9. License Agreements

ICE ClusterWare Documentation, Release 12.4.0

THE FUNCTIONS CONTAINED IN THE SOFTWARE WILL MEET THE END USER'S REQUIREMENTS
OR THAT THE OPERATION OF THE SOFTWARE WILL BE ERROR FREE OR APPEAR PRECISELY AS
DESCRIBED IN THE ACCOMPANYING DOCUMENTATION.

5. Limitation of Liability. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, PENGUIN
NOR ANY OF ITS AUTHORIZED DISTRIBUTORS, RESELLERS AND LICENSORS WILL BE LIABLE
TO END USER FOR ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES, LOST PROFITS, LOST OP-
PORTUNITIES, LOST SAVINGS, OR LOST DATA OR COST OF COVER ARISING OUT OF THE USE
OR INABILITY TO USE THE SOFTWARE OR DOCUMENTATION OR ANY SERVICES HEREUNDER,
HOWEVER CAUSED ON ANY THEORY OF LIABILITY (INCLUDING CONTRACT, STRICT LIABILITY,
OR NEGLIGENCE), EVEN IF PENGUIN, ITS AUTHORIZED DISTRIBUTORS, RESELLERS OR LICEN-
SORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN NO EVENT SHALL PEN-
GUIN'S AGGREGATE LIABILITY UNDER THIS AGREEMENT EXCEED THE AMOUNT ACTUALLY
PAID BY END USER TO PENGUIN FOR THE SOFTWARE GIVING RISE TO THE CLAIM.

END USER ACKNOWLEDGES THAT THE AGREEMENT REFLECTS AN ADEQUATE AND ACCEPT-
ABLE ALLOCATION OF RISK.

6. Confidential Information. Unpublished Software and the structure, organization, and code of the Unpublished
Software, including but not limited to the shell scripts of the Unpublished Software, are confidential and pro-
prietary information ("Confidential Information") of Penguin and/or its licensors. End User agrees to safeguard
such Confidential Information with a degree of care commensurate with reasonable standards of industrial se-
curity for the protection of trade secrets and proprietary information such that no unauthorized use is made of
such information and no disclosure of any part of its contents is made to anyone other than End User's employees
whose duties reasonably require such disclosure in order to effectuate the purposes of this Agreement.

7. Term and Termination. This Agreement will remain in effect until terminated or for the authorized term of
license usage. End User may terminate this Agreement by removing the Unpublished Software from End User's
computers, ceasing all use thereof, and destroying all copies of the Unpublished Software and Documentation and
certifying to Penguin that it has done so. Any breach of this Agreement by End User will result in the immediate
and automatic termination of this Agreement and licenses granted by Penguin herein, and End User shall cease
all use of and destroy all copies of the Unpublished Software and Documentation and certify to Penguin that it
has done so. In addition to termination, Penguin will have the right to pursue any other remedies available to it
under law or in equity.

8. Export Controls. End User acknowledges and agrees that the Software and Documentation which is the subject of
this Agreement may be controlled for export purposes. End User agrees to comply with all United States export
laws and regulations including, but not limited to, the United States Export Administration Regulations, Inter-
national Traffic in Arms Regulations, directives and regulations of the Office of Foreign Asset Control, treaties,
Executive Orders, laws, statutes, amendments, and supplement thereto. End User assumes sole responsibility
for any required export approval and/or licenses and all related costs and for the violation of any United States
export law or regulation.

9. U.S. Government End Users. The Software is a "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
1995), consisting of "commercial computer software" and "commercial computer software documentation" as
such terms are used in 48 C.F.R. 12.212 (SEPT 1995). Consistent with 48 C.F.R. 212 and 48 C.F.R. 227.7202-1
through 227.7202-4 (JUNE 1995), all U.S. Government End Users acquire the Software with only those rights
set forth herein.

10. Miscellaneous. This Agreement is the final, complete and exclusive agreement between the parties relating
to the Software and Documentation, and supersedes all prior or contemporaneous proposals, representations,
understandings, or agreements relating thereto, whether oral or written. Software shall be deemed irrevocably
accepted by End User upon installation. No waiver or modification of the Agreement will be valid unless signed
by each party. The waiver of a breach of any term hereof will in no way be construed as a waiver of any other
term or breach hereof. The headings in this Agreement do not affect its interpretation. End User may not assign
or transfer any of its rights or obligations under this Agreement to a third party without the prior written consent
of Penguin. Any attempted assignment or transfer in violation of the foregoing will be null and void. If any

9.1. End-User License Agreement 313

ICE ClusterWare Documentation, Release 12.4.0

provision of this Agreement is held by a court of competent jurisdiction to be unenforceable, the remaining
provisions of this Agreement will remain in full force and effect. This Agreement is governed by the laws of the
State of California without reference to conflict of laws principles that would require the application of the laws
of any other state. The United Nations Convention on Contracts for the International Sale of Goods shall not
apply to this Agreement. All disputes arising out of this Agreement will be subject to the exclusive jurisdiction
of the state and federal courts located in San Francisco County, California, and the parties agree and submit
to the personal and exclusive jurisdiction and venue of these courts. Should you have any questions about this
Agreement, or if you desire to contact Penguin, please contact us by mail at Penguin Computing, Inc., 45800
Northport Loop West, Fremont, CA 94538.

9.2 Third-Party License Agreements
GNU General Public License (GPL)

GNU GPL 1: http://www.gnu.org/copyleft/gpl.html

GNU GPL 2: https://opensource.org/licenses/gpl-2.0.php

GNU GPL 3: https://opensource.org/licenses/gpl-3.0.html

Red Hat RHEL License
Visit https://www.redhat.com/en/about/agreements to view the license for each specific location.

etcd
https://github.com/etcd-io/etcd/blob/main/LICENSE

Apache 2.0 license.

Telegraf, InfluxDB
https://github.com/influxdata/influxdb/blob/master/LICENSE

MIT License:

Copyright (c) 2-15-2018 InfluxData, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associ-
ated documentation files (the "Software"), to deal in the Software without restriction, including without
limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions
of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

Grafana
https://grafana.com/legal/grafana-labs-license/

GNU Affero General Public License (AGPL) Version 3:

Compatible with GNU GPL v3, plus an AGPL requirement to make source code available if distributing
any works based upon the licensed software.

314 Chapter 9. License Agreements

http://www.gnu.org/copyleft/gpl.html
https://opensource.org/licenses/gpl-2.0.php
https://opensource.org/licenses/gpl-3.0.html
https://www.redhat.com/en/about/agreements
https://github.com/etcd-io/etcd/blob/main/LICENSE
https://github.com/influxdata/influxdb/blob/master/LICENSE
https://grafana.com/legal/grafana-labs-license/

ICE ClusterWare Documentation, Release 12.4.0

jemalloc
https://github.com/jemalloc/jemalloc/blob/dev/COPYING

Unless otherwise specified, files in the jemalloc source distribution are subject to the following license:

Copyright (C) 2002-2018 Jason Evans <jasone@canonware.com>. All rights reserved.

Copyright (C) 2007-2012 Mozilla Foundation. All rights reserved.

Copyright (C) 2009-2018 Facebook, Inc. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice(s), this list of conditions and
the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice(s), this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the distribu-
tion.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ''AS IS'' AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THE-
ORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

MPICH (formerly MPICH2)
https://github.com/pmodels/mpich/blob/master/COPYRIGHT

The following is a notice of limited availability of the code, and disclaimer which must be included in the
prologue of the code and in all source listings of the code.

Copyright Notice

• 2002 University of Chicago

Permission is hereby granted to use, reproduce, prepare derivative works, and to redistribute to others.
This software was authored by:

Mathematics and Computer Science Division, Argonne National Laboratory, Argonne IL 60439

(and)

Department of Computer Science, University of Illinois at Urbana-Champaign

GOVERNMENT LICENSE

Portions of this material resulted from work developed under a U.S. Government Contract and are subject
to the following license: the Government is granted for itself and others acting on its behalf a paid-up,
nonexclusive, irrevocable worldwide license in this computer software to reproduce, prepare derivative
works, and perform publicly and display publicly.

DISCLAIMER

This computer code material was prepared, in part, as an account of work sponsored by an agency of
the United States Government. Neither the United States, nor the University of Chicago, nor any of their
employees, makes any warranty express or implied, or assumes any legal liability or responsibility for

9.2. Third-Party License Agreements 315

https://github.com/jemalloc/jemalloc/blob/dev/COPYING
mailto:jasone@canonware.com
https://github.com/pmodels/mpich/blob/master/COPYRIGHT

ICE ClusterWare Documentation, Release 12.4.0

the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights.

MUNGE
GNU GPL 3, from https://slurm.schedmd.com/disclaimer.html

Copyright (C) 2007-2018 Lawrence Livermore National Security, LLC.

Copyright (C) 2002-2007 The Regents of the University of California. UCRL-CODE-155910.

MUNGE is free software: you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation, either version 3 of the License, or (at your
option) any later version.

Additionally for the MUNGE library (libmunge), you can redistribute it and/or modify it under the terms
of the GNU Lesser General Public License as published by the Free Software Foundation, either version
3 of the License, or (at your option) any later version.

MUNGE is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License and GNU Lesser General Public License for more details.

MVAPICH
http://mvapich.cse.ohio-state.edu/static/media/mvapich/LICENSE-MV2.TXT

Copyright 2003-2018 The Ohio State University.

Portions Copyright 1999-2002 The Regents of the University of California, through Lawrence Berkeley
National Laboratory (subject to receipt of any required approvals from U.S. Dept. of Energy). Portions
copyright 1993 University of Chicago.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

(1) Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

(2) Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

(3) Neither the name of The Ohio State University, the University of California, Lawrence Berkeley Na-
tional Laboratory, The University of Chicago, Argonne National Laboratory, U.S. Dept. of Energy nor
the names of their contributors may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBU-
TORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUB-
STITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUP-
TION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

OpenMPI
https://www.open-mpi.org/community/license.php

316 Chapter 9. License Agreements

https://slurm.schedmd.com/disclaimer.html
http://mvapich.cse.ohio-state.edu/static/media/mvapich/LICENSE-MV2.TXT
https://www.open-mpi.org/community/license.php

ICE ClusterWare Documentation, Release 12.4.0

Most files in this release are marked with the copyrights of the organizations who have edited them. The
copyrights below are in no particular order and generally reflect members of the Open MPI core team who
have contributed code to this release. The copyrights for code used under license from other parties are
included in the corresponding files.

Copyright (c) 2004-2010 The Trustees of Indiana University and Indiana University Research and Tech-
nology Corporation. All rights reserved.

Copyright (c) 2004-2017 The University of Tennessee and The University of Tennessee Research Foun-
dation. All rights reserved.

Copyright (c) 2004-2010 High Performance Computing Center Stuttgart, University of Stuttgart. All rights
reserved.

Copyright (c) 2004-2008 The Regents of the University of California. All rights reserved.

Copyright (c) 2006-2017 Los Alamos National Security, LLC. All rights reserved.

Copyright (c) 2006-2017 Cisco Systems, Inc. All rights reserved.

Copyright (c) 2006-2010 Voltaire, Inc. All rights reserved.

Copyright (c) 2006-2017 Sandia National Laboratories. All rights reserved.

Copyright (c) 2006-2010 Sun Microsystems, Inc. All rights reserved. Use is subject to license terms.

Copyright (c) 2006-2017 The University of Houston. All rights reserved.

Copyright (c) 2006-2009 Myricom, Inc. All rights reserved.

Copyright (c) 2007-2017 UT-Battelle, LLC. All rights reserved.

Copyright (c) 2007-2017 IBM Corporation. All rights reserved.

Copyright (c) 1998-2005 Forschungszentrum Juelich, Juelich Supercomputing Centre, Federal Republic
of Germany

Copyright (c) 2005-2008 ZIH, TU Dresden, Federal Republic of Germany

Copyright (c) 2007 Evergrid, Inc. All rights reserved.

Copyright (c) 2008 Chelsio, Inc. All rights reserved.

Copyright (c) 2008-2009 Institut National de Recherche en Informatique. All rights reserved.

Copyright (c) 2007 Lawrence Livermore National Security, LLC. All rights reserved.

Copyright (c) 2007-2017 Mellanox Technologies. All rights reserved.

Copyright (c) 2006-2010 QLogic Corporation. All rights reserved.

Copyright (c) 2008-2017 Oak Ridge National Labs. All rights reserved.

Copyright (c) 2006-2012 Oracle and/or its affiliates. All rights reserved.

Copyright (c) 2009-2015 Bull SAS. All rights reserved.

Copyright (c) 2010 ARM ltd. All rights reserved.

Copyright (c) 2016 ARM, Inc. All rights reserved.

Copyright (c) 2010-2011 Alex Brick . All rights reserved.

Copyright (c) 2012 The University of Wisconsin-La Crosse. All rights reserved.

Copyright (c) 2013-2016 Intel, Inc. All rights reserved.

Copyright (c) 2011-2017 NVIDIA Corporation. All rights reserved.

9.2. Third-Party License Agreements 317

ICE ClusterWare Documentation, Release 12.4.0

Copyright (c) 2016 Broadcom Limited. All rights reserved.

Copyright (c) 2011-2017 Fujitsu Limited. All rights reserved.

Copyright (c) 2014-2015 Hewlett-Packard Development Company, LP. All rights reserved.

Copyright (c) 2013-2017 Research Organization for Information Science (RIST). All rights reserved.

Copyright (c) 2017-2018 Amazon.com, Inc. or its affiliates. All Rights reserved.

Copyright (c) 2018 DataDirect Networks. All rights reserved.

Additional copyrights may follow

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer listed in this license in the documentation and/or other materials provided
with the distribution.

• Neither the name of the copyright holders nor the names of its contributors may be used to endorse
or promote products derived from this software without specific prior written permission.

The copyright holders provide no reassurances that the source code provided does not infringe any patent,
copyright, or any other intellectual property rights of third parties. The copyright holders disclaim any
liability to any recipient for claims brought against recipient by any third party for infringement of that
parties intellectual property rights.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBU-
TORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUB-
STITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUP-
TION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

pdsh
"GPL", from https://github.com/chaos/pdsh/blob/master/pdsh.spec

Python 2.2 and beyond
https://docs.python.org/3/license.html

Python versions 2.2 and beyond are distributed under the Python Software Foundation (PSF) license, which
PSF deems "GPL-compatible". This license is not the GNU GPL license because PSF allows for distribut-
ing a modified version of Python without making those changes open source. The license makes it possible
to combine Python with other software that is released under the GPL; the others don't allow that.

PYTHON SOFTWARE FOUNDATION LICENSE VERSION 2

1. This LICENSE AGREEMENT is between the Python Software Foundation ("PSF"), and the Individ-
ual or Organization ("Licensee") accessing and otherwise using this software ("Python") in source
or binary form and its associated documentation.

318 Chapter 9. License Agreements

https://github.com/chaos/pdsh/blob/master/pdsh.spec
https://docs.python.org/3/license.html

ICE ClusterWare Documentation, Release 12.4.0

2. Subject to the terms and conditions of this License Agreement, PSF hereby grants Licensee a nonex-
clusive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly,
prepare derivative works, distribute, and otherwise use Python alone or in any derivative version,
provided, however, that PSF's License Agreement and PSF's notice of copyright, i.e., "Copyright
(c) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014 Python
Software Foundation; All Rights Reserved" are retained in Python alone or in any derivative version
prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or incorporates Python or any part
thereof, and wants to make the derivative work available to others as provided herein, then Licensee
hereby agrees to include in any such work a brief summary of the changes made to Python.

4. PSF is making Python available to Licensee on an "AS IS" basis. PSF MAKES NO REPRESENTA-
TIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIM-
ITATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF
MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE
OF PYTHON WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON FOR ANY
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and condi-
tions.

7. Nothing in this License Agreement shall be deemed to create any relationship of agency, partnership,
or joint venture between PSF and Licensee. This License Agreement does not grant permission to
use PSF trademarks or trade name in a trademark sense to endorse or promote products or services
of Licensee, or any third party.

8. By copying, installing or otherwise using Python, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

Slurm Workload Manager - SchedMD
https://slurm.schedmd.com/disclaimer.html

Slurm is free software; you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either version 2 of the License, or (at your option)
any later version.

Slurm is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

TORQUE Resource Manager
OpenPBS (Portable Batch System) v2.3 Software License

Copyright (c) 1999-2000 Veridian Information Solutions, Inc. All rights reserved.

For a license to use or redistribute the OpenPBS software under conditions other than those described
below, or to purchase support for this software, please contact Veridian Systems, PBS Products Department
("Licensor") at:

www.OpenPBS.org +1 650 967-4675 sales@OpenPBS.org
877 902-4PBS (US toll-free)

This license covers use of the OpenPBS v2.3 software (the "Software") at your site or location, and, for cer-
tain users, redistribution of the Software to other sites and locations. Use and redistribution of OpenPBS

9.2. Third-Party License Agreements 319

https://slurm.schedmd.com/disclaimer.html

ICE ClusterWare Documentation, Release 12.4.0

v2.3 in source and binary forms, with or without modification, are permitted provided that all of the fol-
lowing conditions are met. After December 31, 2001, only conditions 3-6 must be met:

1. Commercial and/or non-commercial use of the Software is permitted provided a current software
registration is on file at www.OpenPBS.org. If use of this software contributes to a publication,
product, or service, proper attribution must be given; see www.OpenPBS.org/credit.html

2. Redistribution in any form is only permitted for non-commercial, non-profit purposes. There can
be no charge for the Software or any software incorporating the Software. Further, there can be no
expectation of revenue generated as a consequence of redistributing the Software.

3. Any Redistribution of source code must retain the above copyright notice and the acknowledgment
contained in paragraph 6, this list of conditions and the disclaimer contained in paragraph 7.

4. Any Redistribution in binary form must reproduce the above copyright notice and the acknowledg-
ment contained in paragraph 6, this list of conditions and the disclaimer contained in paragraph 7 in
the documentation and/or other materials provided with the distribution.

5. Redistributions in any form must be accompanied by information on how to obtain complete source
code for the OpenPBS software and any modifications and/or additions to the OpenPBS software.
The source code must either be included in the distribution or be available for no more than the cost
of distribution plus a nominal fee, and all modifications and additions to the Software must be freely
redistributable by any party (including Licensor) without restriction.

6. All advertising materials mentioning features or use of the Software must display the following ac-
knowledgment:

"This product includes software developed by NASA Ames Research Center, Lawrence
Livermore National Laboratory, and Veridian Information Solutions, Inc. Visit
www.OpenPBS.org for OpenPBS software support, products, and information."

7. DISCLAIMER OF WARRANTY

THIS SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT
ARE EXPRESSLY DISCLAIMED.

IN NO EVENT SHALL VERIDIAN CORPORATION, ITS AFFILIATED COMPANIES, OR THE U.S.
GOVERNMENT OR ANY OF ITS AGENCIES BE LIABLE FOR ANY DIRECT OR INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEG-
LIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This license will be governed by the laws of the Commonwealth of Virginia, without reference to its choice
of law rules.

Addendum

To obtain complete source code for OpenPBS and modifications/additions provided in torque visit
www.openpbs.org and/or www.supercluster.org/downloads.

320 Chapter 9. License Agreements

CHAPTER

TEN

FEEDBACK

We welcome any reports on errors or difficulties that you may find. We also would like your suggestions on improving
this document. Please direct all comments and problems to support@penguincomputing.com.

When writing your email, please be as specific as possible, especially with errors in the text. Please include the chapter
and section information. Also, please mention in which version of the manual you found the error. This version is ICE
ClusterWare™ Release v12.4.0.

10.1 Finding Further Information
If you encounter a problem installing your cluster and find that the Install cannot help you, the following are sources
for more information:

• The Changelog contains per-release specifics, and a Known Issues And Workarounds section.

• The Administration contains references to ClusterWare commands.

10.2 Contacting Penguin Computing Support
If you choose to contact Penguin Computing Support, you may be asked to submit a system information snapshot.
Execute scyld-sysinfo --no-tar to view this snapshot locally, otherwise execute scyld-sysinfo to produce the
compressed tarball that can be emailed or otherwise communicated to Penguin Computing.

321

mailto:support@penguincomputing.com

	ICE ClusterWare Overview
	Cluster Architecture Overview
	The ClusterWare Database
	Provisioning Compute Nodes

	Quickstart
	Prerequisites
	Create Administrator
	Install ClusterWare
	Configure Boot Image and Job Scheduler

	Install
	Supported Distributions and Features
	Required and Recommended Components
	Install ICE ClusterWare
	Download the ICE ClusterWare Install Script and Related Files
	Execute the ICE ClusterWare Install Script

	scyld-install
	scyld-tool-config
	scyld-cluster-conf
	Securing the Cluster
	Authentication
	Assign Temporary Permissions

	Role-Based Access Controls
	Changing the Database Password
	Changing the etcd Password

	Compute Node Remote Access
	Compute Node Host Keys
	Encrypting Communications
	Configure Encrypted Communication between Head and PXE Compute Nodes
	Configure Encrypted Communication between Head and Diskful Compute Nodes
	Configure Client Authentication between Head and Compute Nodes

	Security-Enhanced Linux (SELinux)
	SELinux On Compute Nodes
	SELinux On Head Nodes
	MLS Policy On Head Nodes

	Security Technical Implementation Guides (STIG)

	Services, Ports, Protocols
	Apache
	Chrony
	DHCP
	DNS
	etcd
	iSCSI
	OpenSSH
	Telegraf / Telegraf-Relay / InfluxDB
	TFTP

	Common Additional Configuration
	Configure Hostname
	Managing Databases
	Configure Administrator Authentication
	Disable/Enable Chain Booting
	scyld-nss Name Service Switch (NSS) Tool
	Firewall Configuration
	Configure IP Forwarding
	Status and Health Monitoring
	Install Name Service Cache Daemon (nscd)
	Install jq Tool

	Additional Software
	Adding 3rd-party Software
	Job Schedulers
	Slurm
	Install Slurm
	Working with Slurm

	OpenPBS
	PBS TORQUE

	Kubernetes
	Bootstrap Kubernetes Control Plane
	Example

	Checking Deployment Status
	Example

	Additional Configuration
	Adding Workers
	Example
	scyld-kube

	OpenMPI, MPICH, and/or MVAPICH

	Administration
	Introduction
	ICE ClusterWare Graphical User Interface
	ICE ClusterWare Command Line Tools
	--all and --ids
	--config
	--base-url and --user
	--show-uids, --human, --json, --pretty/--no-pretty
	--csv, --table, --fields

	Common Subcommand Actions
	list (ls)
	create (mk)
	clone (cp)
	update (up)
	replace (re)
	delete (rm)

	Files in database objects
	The then argument
	The --content argument
	Variable Substitution
	Node Attributes, Hardware, and Status
	Head Node Substitutions
	Kickstarting From A Repo

	Manage Cluster
	Cluster Overview Page
	scyld-clusterctl
	scyld-nssctl
	IP Forwarding Issues
	managedb
	ICE ClusterWare Log Files
	Creating Diagnostic Test Images
	scyld-sysinfo

	Create Login Nodes
	Update and Upgrade
	Updating ICE ClusterWare Software
	Updating head nodes
	Updating compute nodes
	Updating ClusterWare 11 to ClusterWare 12

	Updating Firmware
	Updating Base Distribution Software

	Backup and Restore
	Backup and Restore of ICE ClusterWare Software
	Backup and Restore of the Database
	take-snapshot

	Interacting with Compute Nodes
	scyld-nodectl

	Nodes Page
	Node Filtering
	Node Grid Display
	Node List Display

	Executing Commands
	Create Nodes
	Node Creation with Known MAC address(es)
	Node Creation with Unknown MAC address(es)
	Support for Diskful Nodes
	Pre-Installer Script
	Installer Scripts
	Installation Logs
	Head Node Preparation
	RPM and DEB Installations
	TAR Installations

	Compute Node Fields
	Compute Nodes IPMI Access

	Boot Nodes
	Compute Node Initialization Scripts
	Booting From Local Storage Cache
	Failing To Boot From Local Storage

	Booting Diskful Compute Nodes
	Installing the clusterware-node Package
	Additional Support for Diskful Nodes

	scyld-reports

	Manage Nodes
	Changing IP Addresses
	Node Name Resolution
	Command-Line Monitoring of Nodes
	Managing Node Failures
	Replacing Failed Nodes

	Soft Power Control Failures
	Managing Large Clusters
	Improve Scaling of Node Booting

	Hostnames Page
	Create a Hostname
	Edit Hostname
	Delete Hostname
	Related Links

	Manage Non-ICE ClusterWare Entities

	Attribute Groups
	Database Objects Fields and Attributes
	Attribute Groups Page
	Create Attribute Group
	Edit Attribute Group
	Delete Attribute Group
	Change Default Attribute Group
	Related Links

	Node Attributes
	Dynamic Groups Page
	Create Dynamic Group
	Update Dynamic Group
	Filter Nodes by Dynamic Group
	Delete Dynamic Group
	Related Links

	Attribute Groups and Dynamic Groups
	scyld-attribctl
	Reserved Attributes
	_aim_status
	_altmacs
	_ansible_pull
	_ansible_pull_args
	_ansible_pull_now
	_bmc_pass
	_bootloader
	_bootnet
	_busy
	_boot_config
	_boot_rw_layer
	_boot_style
	_boot_tmpfs_size
	_coreos_ignition_url
	_coreos_install_dev
	_disk_cache
	_disk_root
	_disk_wipe
	_domain
	_gateways
	_hardware_plugins
	_hardware_secs
	_health
	_health_check
	_health_plugins
	_health_secs
	_health_check_secs
	_hostname
	_hosts
	_ignition
	_ips
	_ipxe_sanboot
	_macs
	_no_boot
	_preferred_head
	_remote_pass
	_remote_user
	_sched_extra
	_sched_full
	_sched_state
	_status_cpuset
	_status_hardware_secs
	_status_packages_secs
	_status_plugins
	_status_secs
	_telegraf_omit_pattern
	_telegraf_plugins
	_tpm_owner_pass

	Naming Pools Page
	Create a Naming Pool
	Edit Naming Pool
	Delete Naming Pool
	Change Default Naming Pattern
	Related Links

	Node Names and Pools
	Node Indexing and Grouping in Naming Pools
	Secondary Naming Pools
	Configuration File
	Command Line Tools

	Boot Configurations Page
	Create Boot Configuration
	Edit Boot Configuration
	Delete Boot Configuration
	Related Links

	scyld-add-boot-config
	scyld-* Wrapper Scripts
	Boot Configurations
	Create Local Repo
	Create Boot Configuration with Kickstart
	scyld-mkramfs
	scyld-bootctl
	Freezing a Boot Configuration
	Deleting Boot Configurations
	Exporting and Importing Boot Configurations Between Clusters
	Using Kickstart
	Kickstart Files
	Kickstart Failing

	Using RHCOS

	Software Images
	Images
	Images Page
	Create an Image
	Edit Image
	Delete Image
	Related Links

	Creating Images
	Recreating the Default Image
	Repos and Distros
	Using ISO Releases
	Using Archived Releases
	Installing Software With Subscriptions

	Modifying Images
	Caching in scyld-modimg
	Updating the Kernel in an Image
	Updating Drivers Inside Images
	Capturing and Importing Images
	Automating Common Image Tasks
	Deploying Images Using Ignition
	Freezing an Image
	Deleting Unused Images

	scyld-imgctl
	scyld-modimg
	Failing PXE Network Boot
	Creating Local Repositories without Internet
	Validating ClusterWare ISOs
	make-iso

	Image Sources Page
	Create a Distro
	Edit a Distro
	Delete a Distro
	Related Links

	Git Repositories
	Initial Preparation
	Locally Hosted Repositories
	Mirroring Upstream Resources
	Public Access

	Git Repositories Page
	Create Git Repo
	Edit Git Repo
	Clone Git Repo
	Delete Git Repo
	Related Links

	State Maps
	Grafana Telemetry Dashboard
	Introduction to Grafana and InfluxDB
	InfluxDB
	Data Retention
	Learn More

	Grafana

	Grafana Setup Script
	Arguments
	Example

	Grafana Login
	Grafana Cluster Monitoring
	Grafana General Page
	Grafana Node Monitoring
	Grafana Alerts

	Workload Management
	Monitoring Scheduler Info
	sched-watcher Deployment
	Verify Data
	Config Settings
	Notes

	Applications Report Excessive Interruptions and Jitter

	Role-Based Access Control System
	Permissions
	Roles
	Modifying the Role-Permissions Mapping

	Administrators Page
	Add Administrator
	Edit Administrator
	Delete Administrator
	Related Links

	Configure Additional Cluster Administrators
	scyld-adminctl

	User Impersonation
	Integrating Keycloak with ICE ClusterWare for RBAC
	Installation
	Select a Realm
	Create a New Client
	Add Users
	Select or Create Roles
	Configuring ClusterWare Software
	Production Operations

	User Management
	Logging and Auditing
	Access Token Lifespan

	Integrating FreeIPA with ICE ClusterWare
	Installation
	Identify a Group for ClusterWare Users
	Identify an Admin Account for Keycloak
	Configure Keycloak
	Verifying the Integration

	Heads Page
	Important Files on Head Nodes
	The ~/.scyldcw/ Folder
	auth_tkt.cookie
	logs/
	workspace/
	parse_failures/

	The /opt/scyld/clusterware/ Folder
	/opt/scyld/clusterware/bin/
	/opt/scyld/clusterware/conf/
	/opt/scyld/env/, modules/, and src/
	/opt/scyld/clusterware/parse_failures/
	/opt/scyld/clusterware/storage/
	/opt/scyld/clusterware/workspace/

	Managing Multiple Head Nodes
	Adding a Head Node
	Join a non-ClusterWare server
	Join a ClusterWare head node
	After a Join
	Cleaning up From Join Failures

	Removing a Joined Head Node
	Peer Downloads

	Booting With Multiple Head Nodes

	headctl
	Troubleshooting Head Nodes
	Head Node Filesystem Is 100% Full
	Verify Excessive Storage is Related to ClusterWare Software
	Remove Unnecessary Objects from the ClusterWare Database
	Investigate InfluxDB Retention of Telegraf Data
	Remove Unnecessary Images and Repos
	Move Large Directories

	Head Nodes Disagree About Compute Node State
	Head Node Failure

	etcd Database Exceeds Size Limit

	Networks Page
	Create a Network
	Edit Network
	Delete Network
	Related Links

	Open Network Ports
	Providing DHCP to Additional Interfaces
	Exceeding System Limit of Network Connections
	Managing Zero-Touch Provisioning (ZTP)

	Articles
	ICE ClusterWare Plugin System
	Status Plugins
	Hardware Plugins
	Health-Check Plugins
	Telegraf Plugins
	Creating New Plugins
	Creating Status Plugins
	Creating Hardware Plugins
	Creating Health-Check Plugins
	Creating Telegraf Plugins

	Using Ansible
	Using Node Attributes with Ansible
	Applying Ansible Playbooks to Images

	Using Singularity
	Using Docker for Compute Nodes
	Using Kubernetes
	Using a Single Non-ClusterWare System as a Control Plane
	Using Multiple ClusterWare Nodes as a Control Plane
	Using Multiple Non-ClusterWare Systems as a Control Plane

	Creating Arbitrary Rocky Images
	Using Version-Specific ISO File
	Using Publicly Available Repositories

	Creating Arbitrary RHEL Images
	Creating Ubuntu and Debian Images
	UBUNTU
	DEBIAN

	Converting CentOS 8 to Alternative Distro
	Using Docker for Head Nodes
	Install the Foundational Packages
	Download and Load the ClusterWare Docker Image
	Start the Container
	Configure the Container
	Stopping and Restarting the Container
	The Container Storage Area
	Known Issues

	API Reference
	Authentication
	Username/Password Authentication
	Token Refresh
	Alternate Authentication Methods

	Basic Operations
	List Objects
	Create New Object
	Get Object Info
	Update Object
	Delete Object
	Metadata Information

	Admin Objects
	Data Fields
	Additional Endpoints
	Example

	Node Objects
	Data Fields
	Additional Endpoints
	Example

	Attribute-Group Objects
	Data Fields
	Additional Endpoints
	Example

	Boot Config Objects
	Data Fields
	Additional Endpoints
	Example

	Image Objects
	Data Fields
	Additional Endpoints
	Example

	Dynamic Group Objects
	Data Fields
	Additional Endpoints
	Example

	Naming Pool Objects
	Data Fields
	Additional Endpoints
	Example

	Software Repository Objects
	Data Fields
	Additional Endpoints

	Software Distribution Objects
	Data Fields
	Additional Endpoints

	State Set Objects
	Data Fields
	Additional Endpoints
	Example

	Network Objects
	Data Fields
	Additional Endpoints

	Git Repository Objects
	Data Fields
	Additional Endpoints

	Hostname Objects
	Data Fields
	Additional Endpoints
	Example

	Cluster-wide Endpoints
	Head Node Endpoints
	Data Fields
	Additional Endpoints

	Boot-time Support Endpoints
	Client Download Endpoints

	Release Notes, Changelog, and Known Issues
	Release Notes
	Changelog
	12.4.0-g0000 - February 3, 2025
	12.3.0-g0000 - October 4, 2024
	12.2.0-g0000 - July 26, 2024
	12.1.1-g0000 - January 23, 2024
	12.1.0-g0000 - December 28, 2023
	12.0.1-g0000 - July 24, 2023
	12.0.0-g0000 - April 21, 2023

	Known Issues And Workarounds

	Frequently Asked Questions (FAQ)
	Software Install/Update
	Cluster Management
	Manipulating Compute Node Images
	Issues with Interacting with Compute Nodes

	License Agreements
	End-User License Agreement
	Third-Party License Agreements

	Feedback
	Finding Further Information
	Contacting Penguin Computing Support

